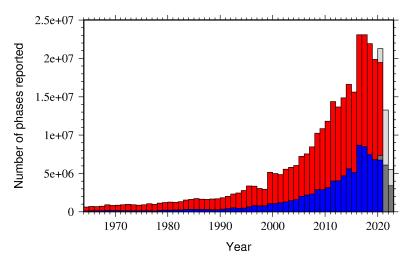
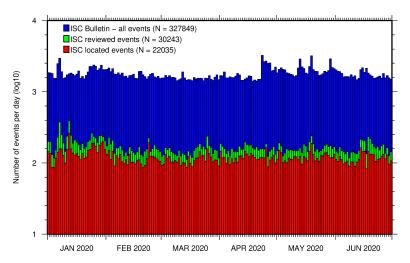
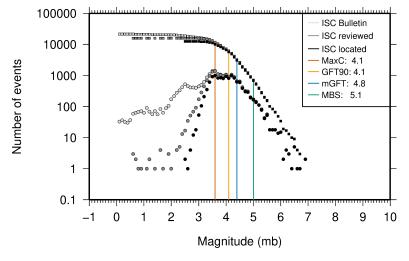
Summary of the Bulletin of the International Seismological Centre


2020

 ${\bf January-June}$


Volume 57 Issue I

www.isc.ac.uk


ISSN 2309-236X

The number of phases (red) and number of amplitudes (blue) collected by the ISC for events each year since 1964. The data in grey covers the current period where data are still being collected before the ISC review takes place and are accurate at the time of publication. See Section 7.3.

The number of events within the Bulletin for the current summary period. The vertical scale is logarithmic. See Section 8.1.

Frequency and cumulative frequency magnitude distribution for all events in the ISC Bulletin, ISC reviewed events and events located by the ISC. The magnitude of completeness (M_C) is shown for the ISC Bulletin. Note: only events with values of m_b are represented in the figure. See Section 8.4.

Summary of the Bulletin of the International Seismological Centre

2020

January - June

Volume 57 Issue I

Produced and edited by:

Kathrin Lieser, James Harris, Natalia Poiata and Dmitry Storchak

Published by International Seismological Centre

The International Seismological Centre (ISC) is a Charitable Incorporated Organization (CIO) registered with The Charity Commission for England and Wales. Registered charity number: 1188971.

ISC Data Products

http://www.isc.ac.uk/products/

ISC Bulletin:

http://www.isc.ac.uk/iscbulletin/search

ISC Bulletin and Catalogue monthly files, to the last reviewed month in FFB or ISF1 format:

 $http://download.isc.ac.uk/[isf|ffb]/[bulletin|catalogue]/{\it yyyy/yyymm.} gz$

ftp://www.isc.ac.uk/pub/[isf|ffb]/[bulletin|catalogue]/yyyy/yyymm.gz

Datafiles for the ISC data before the rebuild:

 $http://download.isc.ac.uk//prerebuild/[isf|ffb]/[bulletin|catalogue]/{\it yyyy/yyymm.} gz$

 $ftp://www.isc.ac.uk/pub/prerebuild/[isf|ffb]/[bulletin|catalogue]/{\it yyyy/yyymm.} gz$

ISC-EHB Bulletin:

http://www.isc.ac.uk/isc-ehb/search/

IASPEI Reference Event List (GT bulletin):

http://www.isc.ac.uk/gtevents/search/

ISC-GEM Global Instrumental Earthquake Catalogue:

http://www.isc.ac.uk/iscgem/download.php

ISC Event Bibliography:

 $http://www.isc.ac.uk/event_bibliography/bibsearch.php$

International Seismograph Station Registry:

http://www.isc.ac.uk/registries/search/

Seismological Contacts:

http://www.isc.ac.uk/projects/seismocontacts/

Copyright © 2023 by International Seismological Centre

Permission granted to reproduce for personal and educational use only. Commercial copying, hiring, lending is prohibited.

International Seismological Centre

Pipers Lane

Thatcham

RG19 4NS

United Kingdom

www.isc.ac.uk

The International Seismological Centre (ISC) is a Charitable Incorporated Organization (CIO) registered with The Charity Commission for England and Wales. Registered charity number: 1188971.

ISSN 2309-236X

Printed and bound in Wales by Cambrian Printers.

Contents

1	Pre	tace	1
2	The	International Seismological Centre	2
	2.1	The ISC Mandate	2
	2.2	Brief History of the ISC	3
	2.3	Former Directors of the ISC and its U.K. Predecessors	4
	2.4	Member Institutions of the ISC \dots	5
	2.5	Sponsoring Organisations	10
	2.6	Data Contributing Agencies	11
	2.7	ISC Staff	18
3	Ava	ilability of the ISC Bulletin	23
4	Citi	ng the International Seismological Centre	2 4
	4.1	The ISC Bulletin	24
	4.2	The Summary of the Bulletin of the ISC \dots	25
	4.3	The historical printed ISC Bulletin (1964-2009)	25
	4.4	The IASPEI Reference Event List	25
	4.5	The ISC-GEM Catalogue	25
	4.6	The ISC-EHB Dataset	27
	4.7	The ISC Event Bibliography	27
	4.8	International Registry of Seismograph Stations	27
	4.9	Seismological Dataset Repository	27
	4.10	Data transcribed from ISC CD-ROMs/DVD-ROMs	27
5	Notes from ISC Data Users		
	5.1	Correct Assignment of Rayleigh Waves to Seismic Events	28
6	Sun	nmary of Seismicity, January – June 2020	37
7	Stat	sistics of Collected Data	42
	7.1	Introduction	42
	7.2	Summary of Agency Reports to the ISC	42
	7.3	Arrival Observations	47
	7.4	Hypocentres Collected	54

	7.5	Collection of Network Magnitude Data	56	
	7.6	Moment Tensor Solutions	62	
	7.7	Timing of Data Collection	64	
8	Ove	rview of the ISC Bulletin	66	
	8.1	Events	66	
	8.2	Seismic Phases and Travel-Time Residuals	75	
	8.3	Seismic Wave Amplitudes and Periods	80	
	8.4	Completeness of the ISC Bulletin	82	
	8.5	Magnitude Comparisons	83	
9	\mathbf{The}	Leading Data Contributors	88	
	9.1	The Largest Data Contributors	88	
	9.2	Contributors Reporting the Most Valuable Parameters	91	
	9.3	The Most Consistent and Punctual Contributors	95	
10	App	pendix	97	
	10.1	ISC Operational Procedures	97	
		10.1.1 Introduction	97	
		10.1.2 Data Collection	97	
		10.1.3 ISC Automatic Procedures	98	
		10.1.4 ISC Location Algorithm	102	
		10.1.5 Review Process	112	
		10.1.6 Probabilistic Point Source Model (ISC-PPSM)	114	
		10.1.7 History of Operational Changes	114	
	10.2	IASPEI Standards	115	
		10.2.1 Standard Nomenclature of Seismic Phases	115	
		10.2.2 Flinn-Engdahl Regions	123	
		10.2.3 IASPEI Magnitudes	130	
		10.2.4 The IASPEI Seismic Format (ISF)	134	
		10.2.5 Ground Truth (GT) Events	136	
		10.2.6 Nomenclature of Event Types	138	
	10.3	Tables	139	
11	Glos	ssary of ISC Terminology	157	
12	Ack	$egin{array}{c} \mathbf{nowledgements} \end{array}$	161	
R۵	References			

1

Preface

Dear Colleague,

This is the first 2020 issue of the Summary of the ISC Bulletin, which remains the most fundamental reason for continued operations at the ISC. This issue covers earthquakes and other seismic events that occurred during the period from January to June 2020. Users can search the ISC Bulletin on the ISC website. The monthly Bulletin files are available from the ISC ftp site. For instructions, please see the www.isc.ac.uk/iscbulletin/.

This publication contains information on the ISC, its staff, Members, Sponsors and Data providers. It offers analysis of the data contributed to the ISC by many seismological agencies worldwide as well as analysis of the data in the ISC Bulletin itself. This issue also includes seismological standards and procedures used by the ISC in its operations.

I would like to reiterate here that all ISC hypocenter solutions (1964-present) are now based on the ak135 velocity model and all ISC magnitudes (1964-present) are based on the latest robust procedures.

As another note from the ISC data users, we included an invited article from the Institute of Geophysics and Geology of the University of Leipzig in Germany on correct assignment of Rayleigh waves to seismic events.

We hope that you find this publication useful in your work. If your home-institution or company is unable, for one reason or another, to support the long-term international operations of the ISC in full by becoming a Member or a Sponsor, then, please, consider subscribing to this publication by contacting us at admin@isc.ac.uk.

With kind regards to our Data Contributors, Members, Sponsors and users,

Dr Dmitry A. Storchak

Director

International Seismological Centre (ISC)

The ISC is a Charitable Incorporated Organization (CIO) registered with The Charity Commission for England and Wales. Registered charity number: 1188971.

2

The International Seismological Centre

2.1 The ISC Mandate

The International Seismological Centre (ISC) was set up in 1964 with the assistance of UNESCO as a successor to the International Seismological Summary (ISS) to carry forward the pioneering work of Prof. John Milne, Sir Harold Jeffreys and other British scientists in collecting, archiving and processing seismic station and network bulletins and preparing and distributing the definitive summary of world seismicity.

Under the umbrella of the International Association of Seismology and Physics of the Earth Interior (IASPEI/IUGG), the ISC has played an important role in setting international standards such as the International Seismic Bulletin Format (ISF), the IASPEI Standard Seismic Phase List (SSPL) and both the old and New IASPEI Manual of the Seismological Observatory Practice (NMSOP-2) (www.iaspei.org/projects/NMSOP.html).

The ISC has contributed to scientific research and prominent scientists such as John Hodgson, Eugine Herrin, Hal Thirlaway, Jack Oliver, Anton Hales, Ola Dahlman, Shigeji Suehiro, Nadia Kondorskaya, Vit Karnik, Stephan Müller, David Denham, Bob Engdahl, Adam Dziewonski, John Woodhouse and Guy Masters all considered it an important duty to serve on the ISC Executive Committee and the Governing Council.

The current mission of the ISC is to maintain:

- the ISC **Bulletin** the longest continuous definitive summary of World seismicity (collaborating with 130 seismic networks and data centres around the world). (www.isc.ac.uk/iscbulletin/)
- the International Seismographic Station Registry (**IR**, jointly with the World Data Center for Seismology, Denver). (www.isc.ac.uk/registries/)
- the IASPEI Reference Event List (Ground Truth, **GT**, jointly with IASPEI). (www.isc.ac.uk/gtevents/)

These are fundamentally important tasks. Bulletin data produced, archived and distributed by the ISC for almost 50 years are the definitive source of such information and are used by thousands of seismologists worldwide for seismic hazard estimation, for tectonic studies and for regional and global imaging of the Earth's structure. Key information in global tomographic imaging is derived from the analysis of ISC data. The ISC Bulletin served as a major source of data for such well known products as the ak135 global 1-D velocity model and the EHB (Engdahl et al., 1998) and Centennial (Engdahl and Villaseñor, 2002) catalogues. It presents an important quality-control benchmark for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). Hypocentre parameters from the ISC Bulletin are used

by the Data Management Center of the Incorporated Research Institutions for Seismology (IRIS DMC) to serve event-oriented user-requests for waveform data. The ISC-GEM Bulletin is a cornerstone of the ISC-GEM Global Instrumental Reference Earthquake Catalogue for Global Earthquake risk Model (GEM).

The ISC Bulletin contains over 8 million seismic events: earthquakes, chemical and nuclear explosions, mine blasts and mining induced events. Almost 2 million of them are regional and teleseismically recorded events that have been reviewed by the ISC analysts. The ISC Bulletin contains approximately 255 million individual seismic station readings of arrival times, amplitudes, periods, SNR, slowness and azimuth, reported by approximately 19,000 seismic stations currently registered in the IR. Over 9,000 stations have contributed to the ISC Bulletin in recent years. This number includes the numerous sites of the USArray. The IASPEI GT List currently contains 10187 events for which latitude, longitude and depth of origin are known with high confidence (to 5 km or better) and seismic signals were recorded at regional and/or teleseismic distances.

2.2 Brief History of the ISC

Figure 2.1: The steel globe bearing positions of early seismic stations was used for locating positions of earthquakes for the International Seismological Summaries.

Earthquake effects have been noted and documented from the earliest times, but it is only since the development of earthquake recording instruments in the latter half of the 19th century that a proper study of their occurrence has been possible. After the first teleseismic observation of an earthquake in 1889, the need for international exchange of readings was recognised in 1895 by Prof. John Milne and by Ernst von Rebeur Paschwitz together with Georg Gerland, resulting in the publication of the first international seismic bulletins. Milne's "Shide Circulars" were issued under the auspices of the Seismological Committee of the British Association for the Advancement of Science (BAAS), while co-workers of Gerland at the Central Bureau of the International Association of Seismology worked independently in Strasbourg

(BCIS).

Following Milne's death in 1913, Seismological Bulletins of the BAAS were continued under Prof. H.H. Turner, later based at Oxford University. Upon formal post-war dissolution of the International Association of Seismology in 1922 the newly founded Seismological Section of the International Union of Geodesy and Geophysics (IUGG) set up the International Seismological Summary (ISS) to continue at Oxford under Turner, to produce the definitive global catalogues from the 1918 data-year onwards, under the auspices of IUGG and with the support of the BAAS.

ISS production, led by several professors at Oxford University, and Sir Harold Jeffreys at Cambridge

University, continued until it was superseded by the ISC Bulletin, after the ISC was formed in Edinburgh in 1964 with Dr P.L. Willmore as its first director.

During the period 1964 to 1970, with the help of UNESCO and other international scientific bodies, the ISC was reconstituted as an international non-governmental body, funded by interested institutions from various countries. Initially there were supporting members from seven countries, now there are almost 70, and member institutions include national academies, research foundations, government departments and research institutes, national observatories and universities. Each member, contributing a minimum unit of subscription or more, appoints a representative to the ISC's Governing Council, which meets every two years to decide the ISC's policy and operational programme. Representatives from the International Association of Seismology and Physics of the Earth's Interior also attend these meetings. The Governing Council appoints the Director and a small Executive Committee to oversee the ISC's operations.

Figure 2.2: ISC building in Thatcham, Berkshire, UK.

In 1975, the ISC moved to Newbury in southern England to make use of better computing facilities there. The ISC subsequently acquired its own computer and in 1986 moved to its own building at Pipers Lane, Thatcham, near Newbury. The internal layout of the new premises was designed for the ISC and includes not only office space but provision for the storage of extensive stocks of ISS and ISC publications and a library of seismological observatory bulletins, journals and books collected over many tens of years.

In 1997 the first set of the ISC Bulletin CD-ROMs was produced (not counting an earlier effort at USGS). The first ISC website appeared in 1998 and the first ISC database was put in day-to-day operations from 2001.

Throughout 2009-2011 a major internal reconstruction of the ISC building was undertaken to allow for more members of staff working in mainstream ISC operations as well as major development projects such as the CTBTO Link, ISC-GEM Catalogue and the ISC Bulletin Rebuild.

2.3 Former Directors of the ISC and its U.K. Predecessors

John Milne Publisher of the Shide Cicular Reports on Earthquakes 1899-1913

Herbert Hall Turner
Seismological Bulletins of the BAAS
1913-1922
Director of the ISS
1922-1930

Harry Hemley Plaskett Director of the ISS 1931-1946

Harold Jeffreys Director of the ISS 1946-1957

Robert Stoneley Director of the ISS 1957-1963

P.L. (Pat) Willmore Director of the ISS 1963-1970 Director of the ISC 1964-1970

Edouard P. Arnold Director of the ISC 1970-1977

Anthony A. Hughes Director of the ISC 1977-1997

Raymond J. Willemann Director of the ISC 1998-2003

Avi Shapira Director of the ISC 2004-2007

2.4 Member Institutions of the ISC

Article IV(a-b) of the ISC Working Statutes stipulates that any national academy, agency, scientific institution or other non-profit organisation may become a Member of the ISC on payment to the ISC of a sum equal to at least one unit of subscription and the nomination of a voting representative to serve on the ISC's governing body. Membership shall be effective for one year from the date of receipt at the ISC of the annual contribution of the Member and is thereafter renewable for periods of one year.

The ISC is currently supported with funding from its 70 Member Institutions and a four-year Grant Award EAR-1811737 from the US National Science Foundation.

Figures 2.3 and 2.4 show major sectors to which the ISC Member Institutions belong and proportional

financial contributions that each of these sectors make towards the ISC's annual budget.

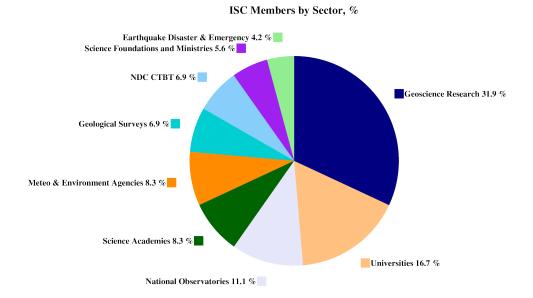


Figure 2.3: Distribution of the ISC Member Institutions by sector during the review of data in this Summary as a percentage of total number of Members.

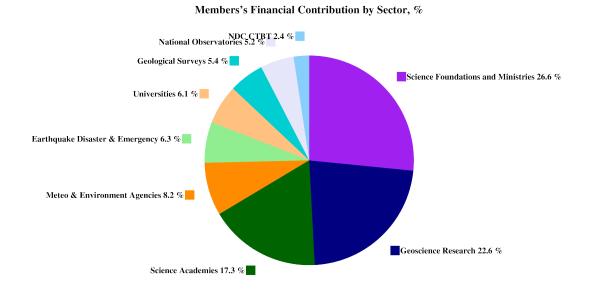


Figure 2.4: Distribution of Member's financial contributions to the ISC by sector during the review of data in this Summary as a percentage of total annual Member contributions.

There follows a list of all current Member Institutions with a category (1 through 9) assigned according to the ISC Working Statutes. Each category relates to the number of membership units contributed.

Centre de Recherche en Astronomie, Astrophysique et Géophysique (CRAAG) Algeria www.craag.dz Category: 1

Geoscience Australia Australia www.ga.gov.au Category: 4

Federal Ministry
Republic of Austria
Education, Science
and Research

Federal Ministry for Education, Science and Research Austria

Category: 2

Centre of Geophysical Monitoring (CGM) of the National Academy of Sciences of Belarus Belarus www.cgm.org.by Category: 1

Belgian Science Policy Office (BELSPO) Belgium

Category: 1

Observatorio Nacional Brazil www.on.br Category: 1

Universidade de São Paulo, Centro de Sismologia Brazil www.sismo.iag.usp.br Category: 1

Seismological Observatory, Institute of Geosciences, University of Brasilia Brazil www.obsis.unb.br Category: 1

National Institute of Geophysics, Geodesy and Geography (NIGGG), Bulgarian Academy of Sciences Bulgaria www.niggg.bas.bg Category: 1

The Geological Survey of Canada Canada gsc.nrcan.gc.ca Category: 4

Centro Sismologico Nacional, Universidad de Chile Chile

China Earthquake Administration China www.cea.gov.cn Category: 4

Institute of Earth Sciences, Academia Sinica Chinese Taipei www.earth.sinica.edu.tw Category: 1

Geological Survey Department Cyprus www.moa.gov.cy Category: 1

Category: 1

Institute of Geophysics, Czech Academy of Sciences Czech Republic

∰ G E U S Geological Survey of Denmark and Greenland (GEUS) Denmark www.geus.dk Category: 2

National Research Institute for Astronomy and Geophysics (NRIAG), Cairo Egypt www.nriag.sci.eg Category: 1

The University of Helsinki Finland

Category: 1

www.helsinki.fi

Category: 2

Laboratoire de Détection et de Géophysique/CEA France www-dase.cea.fr Category: 2

Institute of Radiological and Nuclear Safety (IRSN), joint authority of the Ministries of Defense, the Environment, Industry, Research, and Health France

Institute National des Sciences de l'Univers France www.insu.cnrs.fr Category: 4

GeoForschungsZentrum Potsdam Germany www.gfz-potsdam.de Category: 2

Bundesanstalt für Geowissenschaften und Rohstoffe Germany www.bgr.bund.de Category: 4

Category: 1

The Seismological Institute, National Observatory of Athens Greece www.noa.gr Category: 1

Institute of Earth Physics and Space Science (EPSS), Hungarian Research Network (ELKH) Hungary

The Icelandic Meteorological Office Iceland www.vedur.is Category: 1

National Geophysical Research Institute (NGRI), Council of Scientific and Industrial Research (CSIR)

National Centre for Seismology, Ministry of Earth Sciences of India India www.moes.gov.in Category: 4

Category: 1

Iraqi Meteorological Organization and Seismology Iraq www.imos-tm.com Category: 1

Dublin Institute for Advanced Studies Ireland www.dias.ie Category: 1

Category: 2

Geological Survey of Israel Israel

Category: 1

Soreq Nuclear Research Centre (SNRC) Israel www.soreq.gov.il Category: 1

Istituto Nazionale di Oceanografia e di Geofisica Sperimentale Italy www.ogs.trieste.it Category: 1

Istituto Nazionale di Geofisica e Vulcanologia Italy www.ingv.it

www.ingv.it Category: 3

University of the West Indies at Mona Jamaica www.mona.uwi.edu Category: 1

The Japan Meteorological Agency (JMA) Japan www.jma.go.jp Category: 5

Japan Agency for Marine-Earth Science and Technology (JAM-STEC) Japan www.jamstec.go.jp Category: 2

Earthquake Research Institute, University of Tokyo Japan www.eri.u-tokyo.ac.jp Category: 3

National Institute of Polar Research (NIPR) Japan www.nipr.ac.jp Category: 1

Institute of Geophysics, National University of Mexico Mexico www.igeofcu.unam.mx Category: 1

Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) Mexico resnom.cicese.mx Category: 1

The Royal Netherlands Meteorological Institute (KNMI) Netherlands www.knmi.nl Category: 2

GNS Science New Zealand www.gns.cri.nz Category: 3

The Centre for Earth Evolution and Dynamics (CEED), the University of Oslo Norway

Category: 1

The University of Bergen Norway www.uib.no Category: 2

Stiftelsen NORSAR Norway www.norsar.no Category: 2

Institute of Geophysics, Polish Academy of Sciences Poland www.igf.edu.pl Category: 1

Instituto Português do Mar e da Atmosfera Portugal www.ipma.pt Category: 2

Red Sísmica de Puerto Rico Puerto Rico redsismica.uprm.edu Category: 1

Korean Meterological Administration Republic of Korea www.kma.go.kr Category: 1

National Institute for Earth Physics Romania www.infp.ro Category: 1

Russian Academy of Sciences Russia www.ras.ru Category: 5

Earth Observatory of Singapore (EOS), an autonomous Institute of Nanyang Technological University Singapore www.earthobservatory.sg Category: 1

Environmental Agency of Slovenia Slovenia www.arso.gov.si Category: 1

Council for Geoscience South Africa www.geoscience.org.za Category: 1

Instituto Geografico Nacional Spain

Institut Cartogràfic i Geològic de Catalunya (ICGC) Spain www.icgc.cat Category: 1

Institute of Marine Sciences (ICM-CSIC)

Category: 1

National Defence Research Establishment (FOI) Sweden www.foi.se Category: 1

Uppsala Universitet Sweden www.uu.se Category: 2

The Swiss Academy of Sciences Switzerland www.scnat.ch Category: 2

Disaster and Emergency Management Authority (AFAD)

Turkey www. deprem.gov. trCategory: 2

Kandilli Observatory and Earthquake Research Institute Turkey www.koeri.boun.edu.tr Category: 1

AWE Blacknest United Kingdom www.blacknest.gov.uk Category: 1

British Geological Sur-United Kingdom www.bgs.ac.uk Category: 2

The Royal Society United Kingdom www.royalsociety.org Category: 6

National Earthquake Information Center, U.S. Geological Survey U.S.A. www.neic.usgs.gov Category: 1

Alaska Earthquake Center (AEC), University of Alaska Fairbanks U.S.A.

Category: 1

University of Utah Seismograph Stations (UUSS) U.S.A.

The National Science Foundation of United States. (Grant No. EAR-1811737) U.S.A. www.nsf.gov Category: 9

Texas Seismological Network (TexNet), Bureau of Economic Geology, J.A. and K.G. Jackson School of Geosciences, University of Texas at Austin U.S.A. www.beg.utexas.edu Category: 1

Incorporated Research Institutions for Seismol-U.S.A. www.iris.edu Category: 1

In addition the ISC is currently in receipt of grants from the International Data Centre (IDC) of the Preparatory Commission of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), FM Global, Lighthill Risk Network, and AXA XL.

2.5 Sponsoring Organisations

Article IV(c) of the ISC Working Statutes stipulates any commercial organisation with an interest in the objectives and/or output of the ISC may become an Associate Member of the ISC on payment of an Associate membership fee, but without entitlement to representation with a vote on the ISC's governing body.

GeoSIG provides earthquake, seismic, structural, dynamic and static monitoring and measuring solutions As an ISO Certified company, GeoSIG is a world leader in design and manufacture of a diverse range of high quality, precision instruments for vibration and earthquake monitoring. GeoSIG instruments are at work today in more than 100 countries around the world with well-known projects such as the NetQuakes installation with USGS and Oresund Bridge in Denmark. GeoSIG offers off-the-shelf solutions as well as highly customised solutions to fulfil the challenging requirements in many vertical markets including the following:

- Earthquake Early Warning and Rapid Response (EEWRR)
- Seismic and Earthquake Monitoring and Measuring
- Industrial Facility Seismic Monitoring and Shutdown
- Structural Analysis and Ambient Vibration Testing
- Induced Vibration Monitoring
- Research and Scientific Applications

http://www.sara.pg.it

SARA designs and manufactures seismometers, accelerometers and portable multichannel seismographs for both seismology and applied geophysics. Since 2002 we provided over 5,000 seismic units, 15,000 acceleration transducers and 15,000 geophysical exploration channels, to thousands of professionals and researchers who are using our equipment with success. Providing low-cost instrumentation for developing countries is our main goal. We developed our seismological software SEISMOWIN which provides full support for all international file formats and communication standards like miniSEED, GSE, SeedLink and a number of tools for earthquake location and site assessment. The GEOEXPLORER software suite offers a number of modules for geological surveys.

In 2023 we introduced our new compact broadband seismometer to the market, suitable for surface, posthole and borehole installation, and new versions of our popular SL06 recorder with rack mount housing and ADC with PGA offering 24 or 32 bit streaming.

Visit our web site and download the free tools available at: www.sara.pg.it

http://www.irric.co.jp/en/corporate/

MS&AD InterRisk Research & Consulting

MS&AD InterRisk Research & Consulting, Inc. is responsible for the core of risk-related service businesses in the MS&AD group. We provide services which meet various expectations of the clients, including consulting, research and investigation, seminars and publications for risk management in addition to the think-tank functions.

2.6 Data Contributing Agencies

In addition to its Members and Sponsors, the ISC owes its existence and successful long-term operations to its 150 seismic bulletin data contributors. These include government agencies responsible for national seismic networks, geoscience research institutions, geological surveys, meteorological agencies, universities, national data centres for monitoring the CTBT and individual observatories. There would be no ISC Bulletin available without the regular stream of data that are unselfishly and generously contributed to the ISC on a free basis.

Institute of Geosciences, Polytechnic University of Tirana Albania TIR

Centre de Recherche en Astronomie, Astrophysique et Géophysique Algeria CRAAG

Universidad Nacional de La Plata Argentina LPA

Instituto Nacional de Prevención Sísmica Argentina SJA

National Survey of Seismic Protection Armenia NSSP

Geoscience Australia Australia AUST

Curtin University Australia CUPWA

Zentralanstalt für Meteorologie und Geodynamik (ZAMG) Austria VIE

International Data Centre, CTBTO Austria IDC

Republican Seismic Survey Center of Azerbaijan National Academy of Sciences Azerbaijan AZER

Royal Observatory of Belgium Belgium UCC

Observatorio San Calixto Bolivia SCB

Republic Hydrometeorological Service, Seismological Observatory, Banja Luka Bosnia and Herzegovina RHSSO

Botswana Geoscience Institute Botswana BGSI

Observatory Seismological of the University of Brasilia Brazil OSUNB

Instituto Astronomico e Geofísico Brazil VAO

National Institute of Geophysics, Geology and Geography Bulgaria SOF

Canadian Hazards Information Service, Natural Resources Canada Canada OTT

Centro Sismológico Nacional, Universidad de Chile Chile GUC

China Earthquake Networks Center China B.JI

Institute of Earth Sciences, Academia Sinica Chinese Taipei ASIES

Central Weather Bureau (CWB) Chinese Taipei TAP

Red Sismológica Nacional de Colombia Colombia RSNC

Sección de Sismología, Vulcanología y Exploración Geofísica Costa Rica UCR

Seismological Survey of the Republic of Croatia Croatia ZAG

Servicio Sismológico Nacional Cubano Cuba SSNC

Cyprus Geological Survey Department Cyprus NIC

The Institute of Physics of the Earth (IPEC) Czech Republic IPEC

Institute of Geophysics, Czech Academy of Sciences Czech Republic PRU

Institute of Geophysics, Czech Academy of Sciences Czech Republic WBNET

Korea Earthquake Administration Democratic People's Republic of Korea KEA

GEUS

Geological Survey of Denmark and Greenland Denmark DNK

Universidad Autonoma de Santo Domingo Dominican Republic SDD

Observatorio Sismologico Politecnico Loyola Dominican Republic OSPL

Servicio Nacional de Sismología y Vulcanología Ecuador IGQ

National Research Institute of Astronomy and Geophysics Egypt HLW

Servicio Nacional de Estudios Territoriales El Salvador SNET

Institute of Seismology, University of Helsinki Finland HEL

Institut de Physique du Globe de Paris France IPGP

EOST / RéNaSS France STR

Laboratoire de Détection et de Géophysique/CEA France LDG

Laboratoire de Géophysique/CEA French Polynesia PPT

Institute of Earth Sciences/ National Seismic Monitoring Center Georgia TIF

Alfred Wegener Institute for Polar and Marine Research Germany AWI

Geophysikalisches Observatorium Collm Germany CLL

Bundesanstalt für Geowissenschaften und Rohstoffe Germany BGR

Seismological Observatory Berggießhübel, TU Bergakademie Freiberg Germany BRG

Helmholtz Centre Potsdam GFZ German Research Centre For Geosciences
Germany
GFZ

National Observatory of Athens Greece ATH

Department of Geophysics, Aristotle University of Thessaloniki Greece

University of Patras, Department of Geology Greece UPSL

INSIVUMEH Guatemala GCG

Hong Kong Observatory Hong Kong HKC

Geodetic and Geophysical Reasearch Institute, Hungarian Academy of Sciences Hungary KRSZO

Icelandic Meteorological Office Iceland REY

National Centre for Seismology of the Ministry of Earth Sciences of India India NDI

National Geophysical Research Institute India HYB

Badan Meteorologi, Klimatologi dan Geofisika Indonesia DJA

Tehran University Iran TEH

International Institute of Earthquake Engineering and Seismology (IIEES)
Iran
THR

Iraqi Meteorological and Seismology Organisation Iraq ISN

Dublin Institute for Advanced Studies Ireland DIAS

The Geophysical Institute of Israel
Israel
GII

Laboratory of Research on Experimental and Computational Seimology Italy RISSC

Istituto Nazionale di Geofisica e Vulcanologia Italy ROM

SARA Electronic Instrument s.r.l. Italy SARA

MedNet Regional Centroid - Moment Tensors Italy MED_RCMT

Dipartimento per lo Studio del Territorio e delle sue Risorse (RSNI) Italy GEN

Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS) Italy TRI

Jamaica Seismic Network Jamaica JSN

National Institute of Polar Research Japan SYO

National Research Institute for Earth Science and Disaster Resilience Japan NIED

Japan Meteorological Agency Japan JMA

Jordan Seismological Observatory Jordan JSO

Seismological Experimental Methodological Expedition
Kazakhstan
SOME

National Nuclear Center Kazakhstan NNC

Institute of Seismology, Academy of Sciences of Kyrgyz Republic Kyrgyzstan KRNET

Kyrgyz Seismic Network Kyrgyzstan KNET

Latvian Seismic Network Latvia LVSN

National Council for Scientific Research Lebanon GRAL

Geological Survey of Lithuania Lithuania LIT

Macao Meteorological and Geophysical Bureau Macao, China MCO

Antananarivo Madagascar TAN

Instituto de Geofísica de la UNAM Mexico MEX

Centro de Investigación Científica y de Educación Superior de Ensenada Mexico ECX

Institute of Hydrometeorology and Seismology of Montenegro Montenegro PDG

Centre National de Recherche Morocco CNRM

The Geological Survey of Namibia Namibia NAM

National Seismological Centre, Nepal Nepal DMN

IRD Centre de Nouméa New Caledonia NOU

Institute of Geological and Nuclear Sciences New Zealand WEL

Central American Tsunami Advisory Center Nicaragua CATAC

Seismological Observatory Skopje North Macedonia SKO

University of Bergen Norway BER

Stiftelsen NORSAR Norway NAO

Sultan Qaboos University Oman OMAN

Universidad de Panama Panama UPA

Manila Observatory Philippines QCP

Philippine Institute of Volcanology and Seismology Philippines MAN

Private Observatory of Pawel Jacek Wiejacz, D.Sc. Poland PJWWP

Institute of Geophysics, Polish Academy of Sciences Poland WAR

Instituto Dom Luiz, University of Lisbon Portugal IGIL

Sistema de Vigilância Sismológica dos Açores Portugal SVSA

Instituto Português do Mar e da Atmosfera, I.P. Portugal INMG

Centre of Geophysical Monitoring of the National Academy of Sciences of Belarus Republic of Belarus BELR

Inst. of Seismology and Geodynamics, V.I. Vernadsky Crimean Federal University Republic of Crimea CFUSG

Korea Meteorological Administration Republic of Korea KMA

National Institute for Earth Physics Romania BUC

North Eastern Regional Seismological Centre, Magadan, GS RAS Russia NERS

Federal Center for Integrated Arctic Research Russia FCIAR

Kola Regional Seismic Centre, GS RAS Russia KOLA

Kamchatka Branch of the Geophyiscal Survey of the RAS Russia KRSC

Baykal Regional Seismological Centre, GS SB RAS Russia BYKL

Yakutiya Regional Seismological Center, GS SB RAS Russia YARS

Altai-Sayan Seismological Centre, GS SB RAS Russia ASRS

Sakhalin Experimental and Methodological Seismological Expedition, GS RAS Russia SKHL

Geophysical Survey of Russian Academy of Sciences Russia MOS

Mining Institute of the Ural Branch of the Russian Academy of Sciences Russia MIRAS

Saudi Geological Survey Saudi Arabia SGS

Republicki seizmoloski zavod Serbia BEO

Geophysical Institute, Slovak Academy of Sciences Slovakia BRA

Slovenian Environment Agency Slovenia LJU

Council for Geoscience South Africa PRE

Real Instituto y Observatorio de la Armada Spain SFS

Instituto Geográfico Nacional Spain MDD

Institut Cartogràfic i Geològic de Catalunya Spain MRB

University of Uppsala Sweden UPP

Swiss Seismological Service (SED) Switzerland ZUR

Thai Meteorological Department
Thailand
BKK

The Seismic Research Centre Trinidad and Tobago TRN

Institut National de la Météorologie Tunisia TUN

Disaster and Emergency Management Presidency Turkey AFAD

Kandilli Observatory and Earthquake Research Institute Turkey ISK

IRIS Data Management Center U.S.A. IRIS

The Global CMT Project U.S.A. GCMT

National Earthquake Information Center U.S.A. NEIC

Texas Seismological Network, University of Texas at Austin U.S.A. TXNET

Pacific Northwest Seismic Network U.S.A. PNSN

Pacific Tsunami Warning Center U.S.A. PTWC

Red Sísmica de Puerto Rico U.S.A. RSPR

Subbotin Institute of Geophysics, National Academy of Sciences Ukraine SIGU

Main Centre for Special Monitoring Ukraine MCSM

Dubai Seismic Network United Arab Emirates DSN

International Seismological Centre United Kingdom ISC

British Geological Survey United Kingdom BGS

International Seismological Centre Probabilistic Point Source Model United Kingdom ISC-PPSM Institute of Seismology, Academy of Sciences, Republic of Uzbekistan Uzbekistan ISU

Fundación Venezolana de Investigaciones Sismológicas Venezuela FUNV

Institute of Geophysics, Viet Nam Academy of Science and Technology Viet Nam PLV

Goetz Observatory Zimbabwe BUL

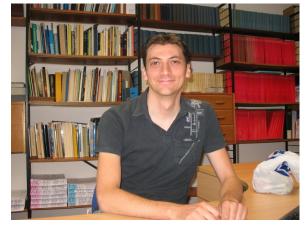
2.7 ISC Staff

Listed below are the staff (and their country of origin) who were employed at the ISC during the time period when the ISC worked on the data covered by this issue of the Summary.

- Dmitry Storchak
- Director
- Russia / United Kingdom

- Lynn Elms
- Administration Officer
- \bullet United Kingdom

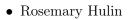
- Senior System and Database Administrator
- United Kingdom


- Oliver Rea
- System Administrator

- Calum Clague
- Data Collection Officer
- South Africa

- Senior Seismologist
- \bullet Italy/UK

- \bullet Tom Garth
- \bullet Seismologist / Senior Developer
- United Kingdom


- Ryan Gallacher
- Seismologist / Developer
- United Kingdom

- Natalia Poiata
- ullet Seismologist / Developer
- ullet Moldova

- Software Engineer
- United Kingdom

- \bullet Analyst
- United Kingdom

- Blessing Shumba
- Seismologist / Senior Analyst
- Zimbabwe

- Rebecca Verney
- Analyst
- United Kingdom

- Elizabeth Ayres
- Analyst / Historical Data Officer
- United Kingdom

- Kathrin Lieser
- Analyst Administrator / Summary Editor / Seismologist
- Germany

- Burak Sakarya
- Seismologist / Analyst
- Turkey

- Rian Harris
- Historical Data Officer
- United Kingdom

- Susana Carvalho
- Historical Data Officer
- Portugal

3

Availability of the ISC Bulletin

The ISC Bulletin is available from the following sources:

• Web searches

The entire ISC Bulletin is available directly from the ISC website via tailored searches. (www.isc.ac.uk/iscbulletin/search) (isc-mirror.iris.washington.edu/iscbulletin/search)

- Bulletin search provides the most verbose output of the ISC Bulletin in ISF or QuakeML.
- Event catalogue only outputs the prime hypocentre for each event, producing a simple list
 of events, locations and magnitudes.
- Arrivals search for arrivals in the ISC Bulletin. Users can search for specific phases for selected stations and events.

• CD-ROMs/DVD-ROMs

CDs/DVDs can be ordered from the ISC for any published volume (one per year), or for all back issues of the Bulletin (not including the latest volume). The data discs contain the Bulletin as a PDF, in IASPEI Seismic Format (ISF), and in Fixed Format Bulletin (FFB) format. An event catalogue is also included, together with the International Registry of seismic station codes.

• FTP site

The ISC Bulletin is also available to download from the ISC ftp site, which contains the Bulletin in PDF, ISF and FFB formats.

```
(ftp://www.isc.ac.uk)
(ftp://isc-mirror.iris.washington.edu)
and
(http://download.isc.ac.uk
```

Mirror service

A mirror of the ISC database, website and ftp site is available at IRIS DMC (isc-mirror.iris.washington.edu), which benefits from their high-speed internet connection, providing an alternative method of accessing the ISC Bulletin.

4

Citing the International Seismological Centre

Data from the ISC should always be cited. This includes use by academic or commercial organisations, as well as individuals. A citation should show how the data were retrieved and may be in one of these suggested forms:

The ISC is named as a valid data centre for citations within American Geophysical Union (AGU) publications. As such, please follow the AGU guidelines when referencing ISC data in one of their journals. The ISC may be cited as both the institutional author of the Bulletin and the source from which the data were retrieved.

4.1 The ISC Bulletin

International Seismological Centre (2023), On-line Bulletin, https://doi.org/10.31905/D808B830

The procedures used for producing the ISC Bulletin have been described in a number of scientific articles. Depending on the use of the Bulletin, users are encouraged to follow the citation suggestions below:

- a) For current ISC location procedure:
- Bondár, I. and D.A. Storchak (2011). Improved location procedures at the International Seismological Centre, Geophys. J. Int., 186, 1220-1244, https://doi.org/10.1111/j.1365-246X.2011.05107.x
- b) For Rebuilt ISC Bulletin:
- Storchak, D.A., Harris, J., Brown, L., Lieser, K., Shumba, B., Verney, R., Di Giacomo, D., Korger, E. I. M. (2017). Rebuild of the Bulletin of the International Seismological Centre (ISC), part 1: 1964–1979. Geosci. Lett. (2017) 4: 32. https://doi.org/10.1186/s40562-017-0098-z
- Storchak, D.A., Harris, J., Brown, L., Lieser, K., Shumba, B., Di Giacomo, D. (2020) Rebuild of the Bulletin of the International Seismological Centre (ISC), part 2: 1980–2010. *Geosci. Lett.* (2020) 7: 18, https://doi.org/10.1186/s40562-020-00164-6
- c) For principles of the ISC data collection process:
- R J Willemann, D A Storchak (2001). Data Collection at the International Seismological Centre, Seis. Res. Lett., 72, 440-453, https://doi.org/10.1785/gssrl.72.4.440
- d) For interpretation of magnitudes:
- Di Giacomo, D., and D.A. Storchak (2016). A scheme to set preferred magnitudes in the ISC Bulletin, J. Seism., 20(2), 555-567, https://doi.org/10.1007/s10950-015-9543-7
- e) For use of source mechanisms:

- Lentas, K., Di Giacomo, D., Harris, J., and Storchak, D. A. (2020). The ISC Bulletin as a comprehensive source of earthquake source mechanisms, *Earth Syst. Sci. Data*, 11, 565-578,https://doi.org/10.5194/essd-11-565-2020
- Lentas, K. (2018). Towards routine determination of focal mechanisms obtained from first motion P-wave arrivals, Geophys. J. Int., 212(3), 1665–1686.https://doi.org/10.1093/gji/ggx503
- f) For use of the original (pre-Rebuild) ISC Bulletin as a historical perspective:
- Adams, R.D., Hughes, A.A., and McGregor, D.M. (1982). Analysis procedures at the International Seismological Centre. *Phys. Earth Planet. Inter.* 30: 85-93,https://doi.org/10.1016/0031-9201(82) 90093-0

4.2 The Summary of the Bulletin of the ISC

International Seismological Centre (2023), Summary of the Bulletin of the International Seismological Centre, January - June 2020, 57(I), https://doi.org/10.31905/NWKNMBLN

4.3 The historical printed ISC Bulletin (1964-2009)

International Seismological Centre, Bull. Internatl. Seismol. Cent., 46(9-12), Thatcham, United Kingdom, 2009.

4.4 The IASPEI Reference Event List

- International Seismological Centre (2023), IASPEI Reference Event (GT) List, https://doi.org/10.31905/32NSJF7V
- Bondár, I. and K.L. McLaughlin (2009). A New Ground Truth Data Set For Seismic Studies, Seismol. Res. Lett., 80, 465-472, https://doi.org/10.1785/gssrl.80.3.465
- Bondár, E. Engdahl, X. Yang, H. Ghalib, A. Hofstetter, V. Kirichenko, R. Wagner, I. Gupta, G. Ekström, E. Bergman, H. Israelsson, and K. McLaughlin (2004). Collection of a reference event set for regional and teleseismic location calibration, *Bull. Seismol. Soc. Am.*, 94, 1528-1545, https://doi.org/10.1785/012003128
- Bondár, E. Bergman, E. Engdahl, B. Kohl, Y.-L. Kung, and K. McLaughlin (2008). A hybrid multiple event location technique to obtain ground truth event locations, *Geophys. J. Int.*, 175, https://doi.org/10.1111/j.1365-246X.2011.05011.x

4.5 The ISC-GEM Catalogue

International Seismological Centre (2023), ISC-GEM Earthquake Catalogue, https://doi.org/10.31905/d808b825, 2023.

- Depending on the use of the Catalogue, to quote the appropriate scientific articles, as suggested below.
- a) For a general use of the catalogue, please quote the following three papers (Storchak et al., 2013; 2015; Di Giacomo et al., 2018):
- Storchak, D.A., D. Di Giacomo, I. Bondár, E.R. Engdahl, J. Harris, W.H.K. Lee, A. Villaseñor and P. Bormann (2013). Public Release of the ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009). Seism. Res. Lett., 84, 5, 810-815, https://doi.org/10.1785/0220130034
- Storchak, D.A., D. Di Giacomo, E.R. Engdahl, J. Harris, I. Bondár, W.H.K. Lee, P. Bormann and A. Villaseñor (2015). The ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009): Introduction, *Phys. Earth Planet. Int.*, 239, 48-63, https://doi.org/10.1016/j.pepi.2014.06.009
- Di Giacomo, D., E.R. Engdahl and D.A. Storchak (2018). The ISC-GEM Earthquake Catalogue (1904–2014): status after the Extension Project, Earth Syst. Sci. Data, 10, 1877-1899, https://doi.org/10.5194/essd-10-1877-2018
- b) For use of location parameters, please quote (Bondár et al., 2015):
- Bondár, I., E.R. Engdahl, A. Villaseñor, J. Harris and D.A. Storchak, 2015. ISC-GEM: Global Instrumental Earthquake Catalogue (1900-2009): II. Location and seismicity patterns, *Phys. Earth Planet. Int.*, 239, 2-13, https://doi.org/10.1016/j.pepi.2014.06.002
- c) For use of magnitude parameters, please quote (Di Giacomo et al., 2015a; 2018):
- Di Giacomo, D., I. Bondár, D.A. Storchak, E.R. Engdahl, P. Bormann and J. Harris (2015a). ISC-GEM: Global Instrumental Earthquake Catalogue (1900-2009): III. Re-computed MS and mb, proxy MW, final magnitude composition and completeness assessment, *Phys. Earth Planet. Int.*, 239, 33-47, https://doi.org/10.1016/j.pepi.2014.06.005
- Di Giacomo, D., E.R. Engdahl and D.A. Storchak (2018). The ISC-GEM Earthquake Catalogue (1904–2014): status after the Extension Project, Earth Syst. Sci. Data, 10, 1877-1899, https://doi.org/10.5194/essd-10-1877-2018
- d) For use of station data from historical bulletins, please quote (Di Giacomo et al., 2015b; 2018):
- Di Giacomo, D., J. Harris, A. Villaseñor, D.A. Storchak, E.R. Engdahl, W.H.K. Lee and the Data Entry Team (2015b). ISC-GEM: Global Instrumental Earthquake Catalogue (1900-2009), I. Data collection from early instrumental seismological bulletins, *Phys. Earth Planet. Int.*, 239, 14-24, https://doi.org/10.1016/j.pepi.2014.06.005
- Di Giacomo, D., E.R. Engdahl and D.A. Storchak (2018). The ISC-GEM Earthquake Catalogue (1904–2014): status after the Extension Project, Earth Syst. Sci. Data, 10, 1877-1899, https://doi.org/10.5194/essd-10-1877-2018
- e) For use of direct values of M0 from the literature, please quote (Lee and Engdahl, 2015):
- Lee, W.H.K. and E.R. Engdahl (2015). Bibliographical search for reliable seismic moments of large earthquakes during 1900-1979 to compute MW in the ISC-GEM Global Instrumental Reference Earthquake Catalogue (1900-2009), *Phys. Earth Planet. Int.*, 239, 25-32, https://doi.org/10.1016/j.pepi.2014.06.004

4.6 The ISC-EHB Dataset

International Seismological Centre (2023), ISC-EHB Dataset, https://doi.org/10.31905/PY08W6S3

Engdahl, E.R., R. van der Hilst, and R. Buland (1998). Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, *Bull. Seism. Soc. Am.*, 88, 3, 722-743. http://www.bssaonline.org/content/88/3/722.abstract

Weston, J., Engdahl, E.R., Harris, J., Di Giacomo, D. and Storchack, D.A. (2018). ISC-EHB: Reconstruction of a robust earthquake dataset, *Geophys. J. Int.*, 214, 1, 474-484, https://doi.org/10.1093/gji/ggy155

Engdahl, E. R., Di Giacomo, D., Sakarya, B., Gkarlaouni, C. G., Harris, J., and Storchak, D. A. (2020). ISC-EHB 1964-2016, an Improved Data Set for Studies of Earth Structure and Global Seismicity, Earth and Space Science, 7(1), e2019EA000897, https://doi.org/10.1029/2019EA000897

4.7 The ISC Event Bibliography

International Seismological Centre (2023), On-line Event Bibliography, https://doi.org/10.31905/ EJ3B5LV6

Also, please reference the following SRL article that describes the details of this service:

Di Giacomo, D., Storchak, D.A., Safronova, N., Ozgo, P., Harris, J., Verney, R. and Bondár, I., 2014. A New ISC Service: The Bibliography of Seismic Events, *Seismol. Res. Lett.*, 85, 2, 354-360, https://doi.org/10.1785/0220130143

4.8 International Registry of Seismograph Stations

International Seismological Centre (2023), International Seismograph Station Registry (IR), https://doi.org/10.31905/EL3FQQ40

4.9 Seismological Dataset Repository

International Seismological Centre (2023), Seismological Dataset Repository, https://doi.org/10.31905/6TJZECEY

4.10 Data transcribed from ISC CD-ROMs/DVD-ROMs

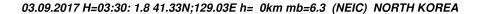
International Seismological Centre, Bulletin Disks 1-30 [CD-ROM], Internatl. Seismol. Cent., Thatcham, United Kingdom, 2023.

5

Notes from ISC Data Users

5.1 Correct Assignment of Rayleigh Waves to Seismic Events

Petra Buchholz and Siegfried Wendt Institute for Geophysics and Geology, University of Leipzig, Germany



Siegfried Wendt and Petra Buchholz

Theoretical travel-time tables can be helpful for phase identification of seismograms. First onsets of P/PKP waves generally have residuals not greater than several seconds. For a correct assignment of the surface wave group to an event, estimating the time difference between the first onsets and the surface waves $(t_{Rmax} - t_{P/PKP})$ is important. Here, t_{Rmax} represents the arrival time of the maximum amplitude inside the Rayleigh wave group (R_{max}) and $t_{P/PKP}$ is the arrival time of the first longitudinal body wave, which may correspond to P, Pdif or PKP phase. Tables with $(t_{Rmax} - t_{P/PKP})$ as a function of epicentral distance were published by Arkangelskaya (1959) and Willmore (1979). The New Manual of Seismological Observatory Practice (NMSOP, Bormann, 2012) contains this table in Data Sheet (DS) 3.1. The time accuracy of these published values $(t_{Rmax} - t_{P/PKP})$ is about one minute.

In this short note we used data from Collm geophysical observatory (CLL) in Germany. The station was established in 1935, providing high-quality seismic data and manually reviewed body and surface wave arrivals (Wendt and Buchholz, 2014). Not only waveforms corresponding to tectonic earthquakes are analysed but also those of anthropogenic events. An example of such a case, including a seismogram from CLL showing clear arrival of surface waves despite the event being a nuclear explosion, is presented in Figure 5.1. We have interpreted about 81,000 seismograms of teleseismic earthquakes in an epicentral distance range of 10 - 170 deg (Fig. 5.2) recorded at CLL between 2006 and 2019. This makes a unique homogeneous database that contains about 13,000 events with Rayleigh wave measurements. All

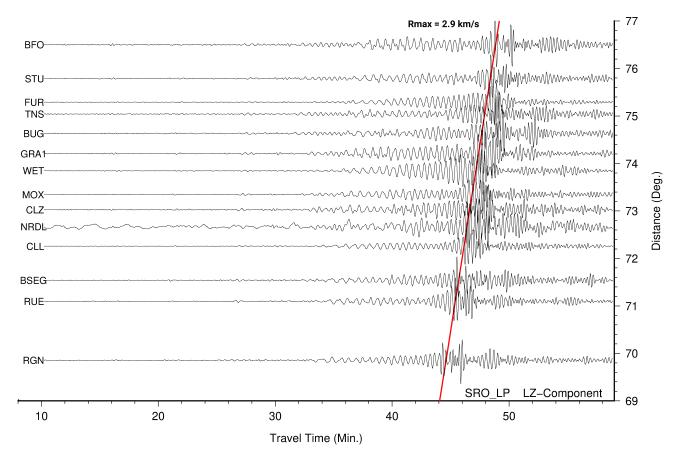


Figure 5.1: Seismograms of an underground explosion in DPRK sorted with respect to distance for stations of the German Regional Seismic Network (GRSN) and GEOFON Network. Horizontal axis shows travel time (in minutes) relative to the origin time of the event (September 3, 2017 03:30:01.8 UTC). The size of event corresponds to mb=6.3 or Ms=5.1 (NEIC).

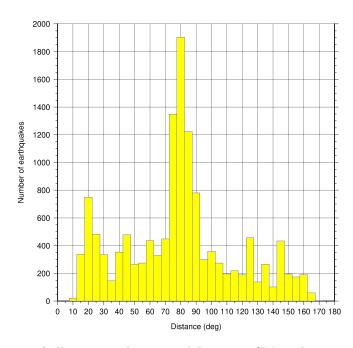


Figure 5.2: Distribution of all events with measured Rmax on CLL with respect to epicentral distance.

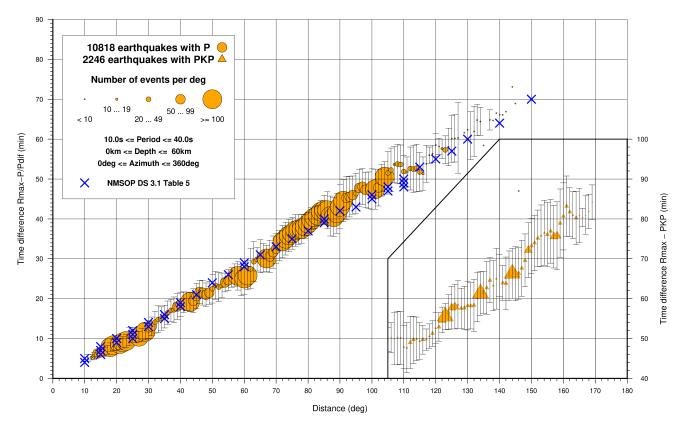


Figure 5.3: Average time differences $t_{Rmax} - t_{P/PKP}$ as function of epicentral distance. Orange circles correspond to $t_{Rmax} - t_P$ values, orange triangles to $t_{Rmax} - t_{PKP}$. Symbol size is proportional to the number of values in the average calculation and thin gray vertical bars represent their standard deviations. Blue crosses represent the values reported in Table 5 of Data Sheet 3.1 from the NMSOP (Bormann, 2012).

Rayleigh waves arrivals were manually picked. Figure 5.3 shows the average time differences between t_{Rmax} and $t_{P/PKP}$ from our dataset as a function of epicentral distance and without differentiating for Rayleigh wave period or ray path (continental or oceanic). There is a general agreement between our values and those reported in the NMSOP (blue crosses). For epicentral distances larger than 105 deg we included Pdif and PKP as the first body wave arrivals and we extended our observations up to 170 deg.

However, the distribution of the average velocities of the Rayleigh wave group calculated for the events recorded at CLL station in grid cells of 2 deg by 5 deg in epicentral distance and azimuth, respectively, highlights significant differences in the group velocities depending on the path (Fig. 5.4). More specifically, predominantly continental paths, such as those within the red sector in Figure 5.4 (epicenters going from the Middle East to the Western Sunda Arc), are characterized by group velocities below 3 km/s. Instead, the blue sector in Figure 5.4 (epicenters including the North Atlantic Ridge and the Caribbean Islands) shows group velocities above 3 km/s for oceanic or mainly oceanic paths (i.e., less than 20% continental path). Some internal, smaller scale variations can also be observed inside the blue coloured sector with the velocities getting smaller due to a larger proportion of continental paths for earthquakes in Iceland or the Mid-Atlantic Ridge.

The histograms shown in Figure 5.5(a) are further highlighting the difference in the Rmax group velocities depending on the path. Indeed, there is a clear shift to values higher than 3.1 km/s and lower than 3.0 km/s for the oceanic and continental paths, respectively. Figure 5.5(b) shows the average group

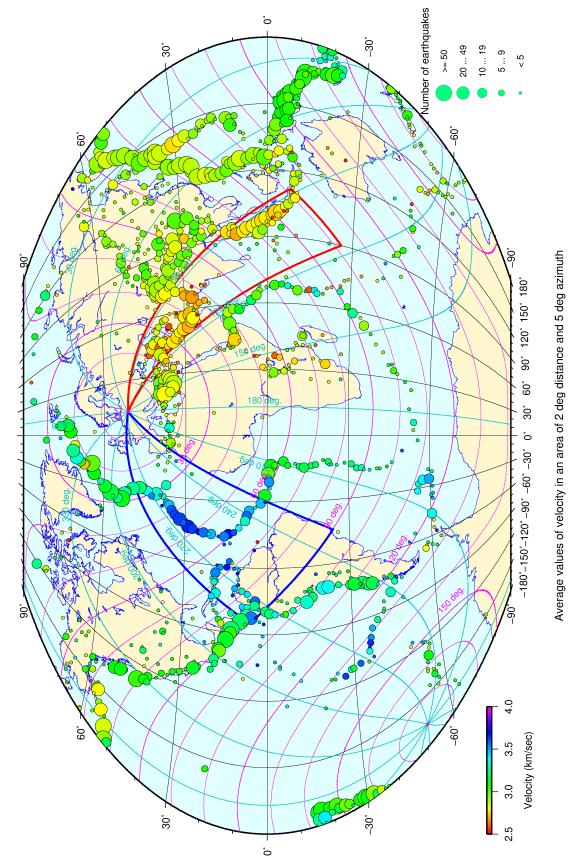


Figure 5.4: Global distribution of maximum Rayleigh wave group (Rmax) velocity estimated as $(t_{Rmax} - t_0)/distance$; with $t_0 = origin$ time of the earthquake. Circles correspond to the averaged individual velocities estimated over 2 deg epicentral distance and 5 deg station azimuth increments for events recorded at station CLL. Size of the circles indicates the number of measurements included in the average calculation. Cyan lines = azimuth, magenta lines = epicentral distance.

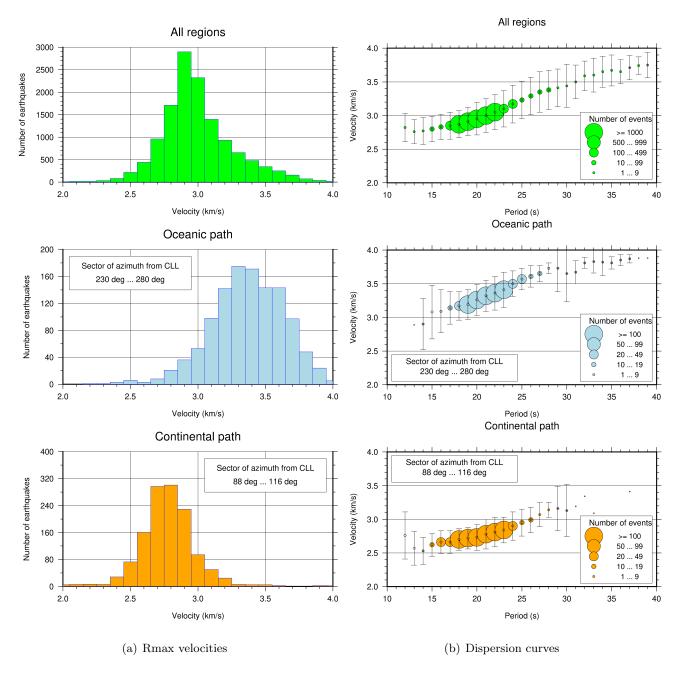


Figure 5.5: Histograms of Rmax velocities (a) and dispersion curves (b) for: all earthquakes in the database regardless of the region of occurrence (green); sector of 230 – 280 deg azimuth from CLL, corresponding to the predominant oceanic path (blue Fig. 5.4)) and sector of 88 – 116 deg azimuth from CLL, corresponding to the predominant continental path (red in Fig. 5.4).

velocities of Rmax as a function of the period T for all earthquakes and for the sectors considered in Figure 5.4. We can observe, as expected, that the velocities increase with the period and that the difference between predominantly continental or oceanic paths persist (i.e., higher velocities for oceanic paths and lower for the continental ones).

Considering the results discussed for Figures 5.4 and 5.5, it follows that the dependence of Rmax velocity on its path should be taken into consideration when estimating the theoretical travel-times t_{Rmax} . With the velocities for period T for continental path and oceanic path defined as $v_{cont}(T)$ and $v_{oce}(T)$, respectively, the theoretical t_{Rmax} for the overall path D, decomposed in a continental part D_{cont} and

an oceanic part D_{oce} , can be estimated as follows:

$$t_R max = \frac{D_{cont}}{v_{cont}(T)} + \frac{D_{oce}}{v_{oce}(T)}.$$

We calculate the continental (D_{cont}) and oceanic (D_{oce}) parts of the path D as the intersections of the horizontal component of the ray-path with the coastal lines using the Generic Mapping Tool (command "spatial"; Wessel et al., 2019). Our measurements indicate that such an approach, although it should be considered as a simple and quick approximation, works well when calculating t_{Rmax} for different paths to CLL. However, other more precise approaches can be used. The proposed expression for the travel-time calculation considers the dependence of the Rayleigh wave on period and path and, as such, it is an improvement compared to the travel times estimations by Archangelskaya (1959) and provided in Table 5 of DS 3.1 from the NMSOP (Bormann, 2012).

Additional challenges in t_{Rmax} estimations may appear due to the complexity of the recorded waveforms. E.g., the superposition of surface waves from two different earthquakes can make the association of the Rayleigh wave measurements to the correct event difficult or impossible by using just time differences. In such instances, sorting the seismograms with respect to epicentral distance can be helpful, especially if there is a distinct difference in the event-station azimuth for the overlapping earthquakes. Figure 5.6

14.03.2010 H=20:33:13.7 2.75S; 83.70E h= 28km Ms=5.5 (NEIC) SOUTH INDIAN OCEAN

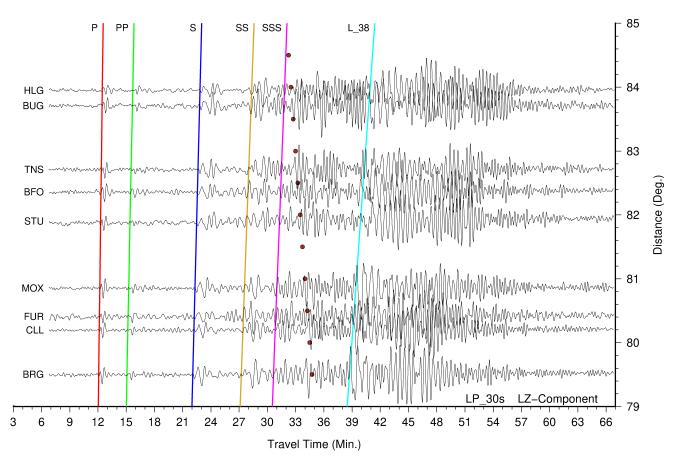


Figure 5.6: Superposition of seismograms of two events: South Indian Ocean (2010-03-14 20:33:11.5) Ms=5.5 and Central Chile (2010-03-14 20:04:55.5) Ms=5.4 (origin times from ISC) on stations of GRSN and GEOFON networks. cyan line = Rayleigh waves of South Indian Ocean event; brown circles = t_{Rmax} of Chile event. See text for more details.

shows a superposition of seismograms for two events: one from South Indian Ocean (MS=5.5, epicentral distance to CLL = 80 deg) and the other from Central Chile (MS=5.4, epicentral distance to CLL = 117 deg) occurring about 28 minutes before the South Indian Ocean earthquake. These two events have a difference of 134 degrees in back azimuth to CLL. Seismograms of the South Indian Ocean event are sorted with respect to the epicentral distances for stations belonging to the German Regional Seismic Network (GRSN) and GEOFON Network. Long, periodic initial part of Rayleigh waves is marked by a cyan line with a slope of 3.8 km/s. Body waves (SS, SSS) of this earthquake are superposed by surface waves of the Central Chile earthquake. Its t_{Rmax} timings are marked by brown circles. The surface waves of the two events can be distinguished by their arrivals on the stations sloping in different directions (cyan line and brown circles). Without sorting seismograms by epicentral distance, the identification and correct association of the surface wave for the Central Chile earthquake may not be possible or it may contain erroneous measurements.

It is also worth mentioning that surface waves can travel around the Earth several times and be observed as returning waves after large earthquakes. This can occur on the short path from the hypocenter to seismic station (360 deg + D) as well as on the long path (360 deg + (360 deg - D), where D is the epicentral distance in degrees. Such waves can add complexity to the seismic recordings and hinder the association of surface waves to the correct event. Figure 5.7 shows an example where seismograms of GRSN stations are sorted with respect to the epicentral distance. Surface wave trains L, L3 and L5

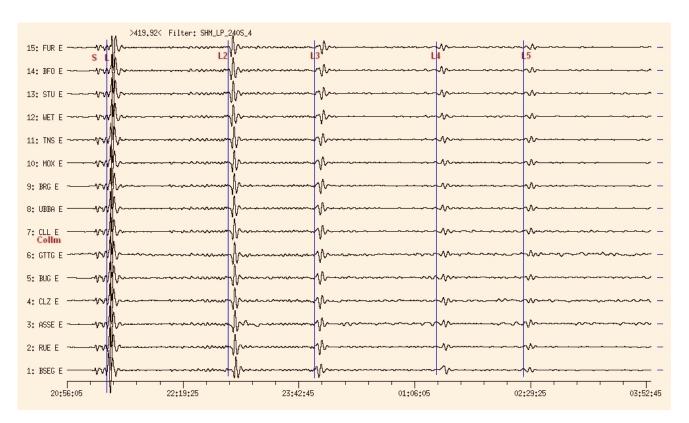


Figure 5.7: Seismograms showing surface waves of a strong earthquake (mb=7.0, MS=7.6, ISC) south of Alaska on October 19, 2020, 20:54:39.0 GMT. The surface waves travelled up to two times around the globe along the short and long path from the earthquake to CLL. L, L3 and L5 – travelled along (multiples of) the short path, L2 and L4 – along (multiples of) the long path. Blue line = arrival time at CLL. Please note that L(m/V) is an older notation for the maximum of the surface wave and does not refer to Love waves specifically here.

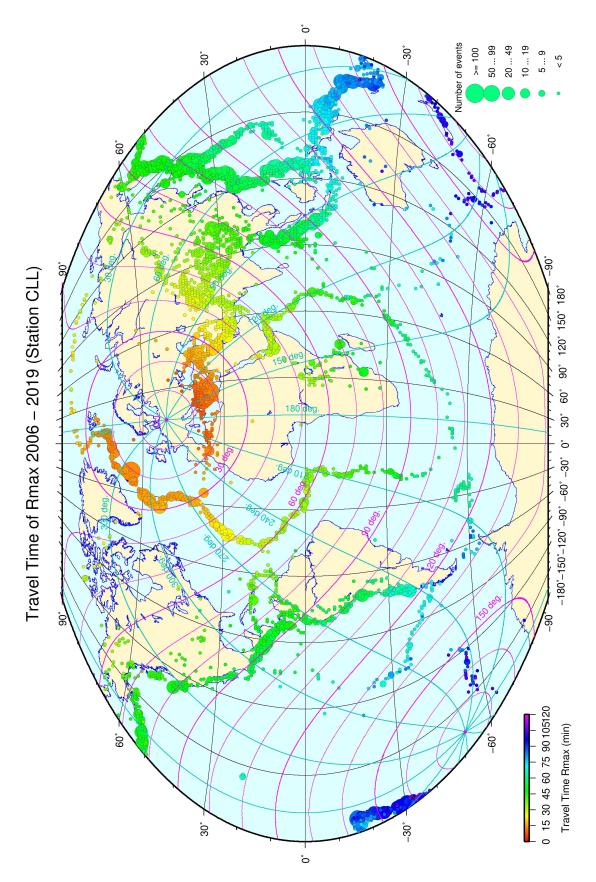


Figure 5.8: Overview of global Rmax travel times $(t_{Rmax} - t_{P/PKP})$ recorded in CLL. Circles = number of events in cell, cyan lines = azimuth, magenta lines = epicentral distance.

correspond to the travel-paths along the short path while L2 and L4 to the travel-paths along the long path (L2 = 360 deg - D, L3 = 360 deg + D, L4 = 360 deg + (360 deg - D), L5 = (2 * 360 deg) + D, i.e. L5 travelled around the Earth twice before arriving at CLL station). The path of the wave-train can be identified from the seismograms: L, L3 and L5 arrive first at the closest station (BSEG) in Northern Germany, while L2 and L4 arrive first at the furthest station FUR in Southern Germany.

In this short note we presented our database of teleseismic Rayleigh wave travel-time observations (t_{Rmax}) at station CLL in Germany and provided a procedure to better estimate the expected arrival times of t_{Rmax} by separating the wave propagation path into the continental and oceanic sections. The database provided can serve for the observation-based Rayleigh wave travel-time estimations at CLL station for future earthquakes. The summary of the global Rayleigh wave travel-times included in the database is provided in Figure 5.7. The dataset containing all the associated picks used in this study is publicly available in the ISC Dataset Repository (Wendt and Buchholz, 2023). By creating a 1 deg by 1 deg grid of this map, we can estimate a time window when Rmax should arrive at the station when analysing the seismograms. This map is of course only based on the measurements at CLL station, but with a large enough dataset, this principle could be used by other observatories and institutions, which would lead to more accurate estimations of the Rayleigh wave arrivals on a global scale.

Acknowledgements

The authors are very grateful to Natalia Poiata and Kathrin Lieser from the International Seismological Centre (ISC) for their constructive suggestions, which helped improve this contribution.

The authors thank Prof. Dr. Michael Korn for a critical reading of the manuscript and useful hints.

References

- Arkangelskaya, V.M. (1959), The dispersion of surface waves in the Earth's crust, *Izv. Akad. Nauk SSSR*, *Seriya Geofiz.*, 9 (in Russian).
- Bormann, P. (Ed.)(2012), New Manual of Seismological Observatory Practice (NMSOP-2), Potsdam: Deutsches GeoForschungszentrum GFZ; IASPEI, https://doi.org/10.2312/GFZ.NMSOP-2.
- GEOFON Data Centre (1993), GEOFON Seismic Network, GFZ Data Services, GFZ German Research Centre for Geosciences, Potsdam, Germany, https://doi.org/10.14470/TR560404.
- GRSN, Federal Institute for Geosciences and Natural Resources (1976), German Regional Seismic Network (GRSN), Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hanover, Germany, https://doi.org/10.25928/mbx6-hr74.
- Willmore, P. L. (Ed.)(1979), Manual of Seismological Observatory Practice, World Data Center A for Solid Earth Geophysics, Report SE-20, Boulder, Colorado.
- Wendt, S. and P. Buchholz (2017), Collm Geophysical Observatory, Summ. Bull. Internatl. Seismol. Cent., January June 2014, 51(I), pp. 32-44, https://doi.org/10.5281/zenodo.996043.
- Wendt, S. and P. Buchholz (2023), Rayleigh wave travel times measured at Collm Geophysical Observatory, Germany, between 2006 and 2019, ISC Seismological Dataset Repository, https://doi.org/10.31905/PHF064PS.
- Wessel, P., J. F. Luis, L. Uieda, R. Scharroo, F. Wobbe, W. H. F. Smith and D. Tian (2019), The Generic Mapping Tools version 6, *Geochem. Geophys. Geosyst.*, 20, 5556–5564, https://doi.org/10.1029/2019GC008515.

Summary of Seismicity, January – June 2020

The period between January and June 2020 produced 5 earthquakes with $M_W \geq 7$; these are listed in Table 6.1. The largest one was the M_W 7.7 strike-slip earthquake along the Oriente fault where the North American and Caribbean plates meet in the Caribbean on 28 January 2020 (19:10:23.76 UTC, 19.3775°N, 78.7539°W, 6 km, 2043 stations (ISC)). The study of Tadapansawutet et al. (2021) of the rupture found an unusually complex rupture process for a transform fault earthquake. They suggest that the complex geometry of the fault system caused changes in rupture speed and direction and triggered successive rupture episodes that included a supershear rupture, where the rupture speed exceeds shear wave velocity.

The most discussed earthquake in the scientific community during this Summary's time period was the M_W 6.8 Elazig event in Turkey (24/01/2020 17:55:15.54 UTC, 38.2987°N, 39.1475°E, 12 km, 2113 stations (ISC)) with currently 41 entries in the ISC Event Bibliography (Di Giacomo et al., 2014; International Seismological Centre, 2023). At the time, it was the largest event in that area along the East Anatolian Fault Zone for about a century. The strike-slip event lasted for about 20 s, propagated from north-east to south-west at a relatively slow rupture speed of 2-2.5 km/s but did not cause any surface slip (e.g., Konca et al., 2021; Melgar et al., 2020; Pousse-Beltran et. al., 2020). Three years later, about 220 km to the southwest the disastrous M_W 7.8 earthquake and its aftershocks struck southern Turkey and Syria in February 2023 causing tens of thousands of people to lose their lives, injuring more than 100,000 people and destroying tens of thousands of buildings (USGS, 2023).

The number of events in this Bulletin Summary categorised by type are given in Table 6.2.

Figure 6.1 shows the number of moderate and large earthquakes in the first half of 2020. The distribution of the number of earthquakes should follow the Gutenberg-Richter law.

Figures 6.2 to 6.5 show the geographical distribution of moderate and large earthquakes in various magnitude ranges.

Table 6.1: Summary of the earthquakes of magnitude $Mw \geq 7$ between January and June 2020.

Date	lat	lon	depth	Mw	Flinn-Engdahl Region
2020-01-28 19:10:23	19.38	-78.75	5	7.7	Cuba region
2020-03-25 02:49:19	48.85	157.76	49	7.5	East of Kuril Islands
2020-06-18 12:49:55	-33.37	-177.84	19	7.4	South of Kermadec Islands
2020-06-23 15:29:02	15.82	-96.03	12	7.4	Near coast of Oaxaca
2020-02-13 10:33:44	45.53	148.84	150	7.0	Kuril Islands

Table 6.2: Summary of events by type between January and June 2020.

felt earthquake	6883
· · ·	0000
known earthquake	160953
known chemical explosion	8109
known induced event	3673
known landslide	3
known mine explosion	2183
known rockburst	153
known experimental explosion	39
suspected earthquake	133571
suspected chemical explosion	5693
suspected induced event	67
suspected mine explosion	5769
suspected rockburst	190
suspected experimental explosion	373
suspected ice-quake	186
unknown	4
total	327849

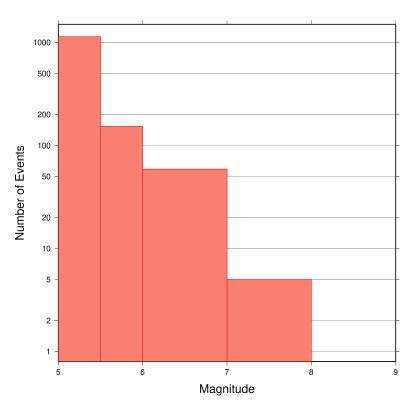


Figure 6.1: Number of moderate and large earthquakes between January and June 2020. The non-uniform magnitude bias here correspond with the magnitude intervals used in Figures 6.2 to 6.5.

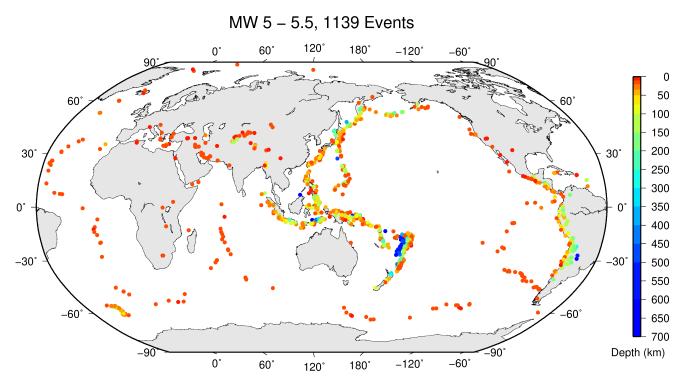


Figure 6.2: Geographic distribution of magnitude 5-5.5 earthquakes between January and June 2020.

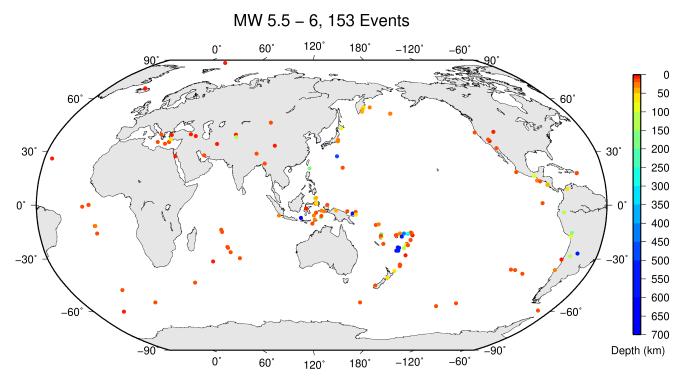


Figure 6.3: Geographic distribution of magnitude 5.5-6 earthquakes between January and June 2020.

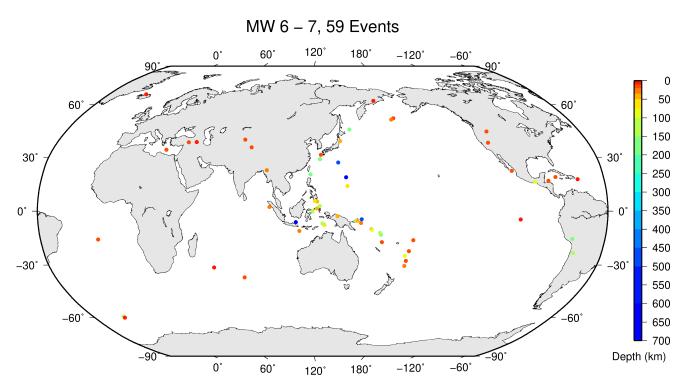


Figure 6.4: Geographic distribution of magnitude 6-7 earthquakes between January and June 2020.

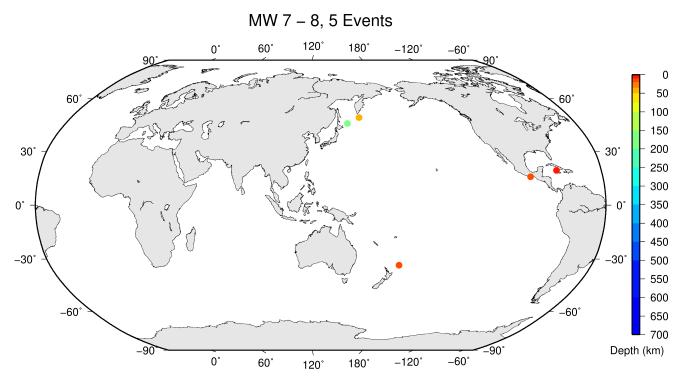


Figure 6.5: Geographic distribution of magnitude 7-8 earthquakes between January and June 2020.

References

- Di Giacomo, D., D.A. Storchak, N. Safronova, P. Ozgo, J. Harris, R. Verney and I. Bondár (2014), A New ISC Service: The Bibliography of Seismic Events, *Seismol. Res. Lett.*, 85(2), 354–360, https://doi.org/10.1785/0220130143.
- International Seismological Centre (2023), On-line Event Bibliography, https://doi.org/10.31905/EJ3B5LV6.
- Konca, A. Ö., H. Karabulut, S.E. Güvercin, F. Eskiköy, S. Özarpacı, A. Özdemir, M. Floyd, S Ergintav and U. Doğan (2021), From interseismic deformation with near-repeating earthquakes to co-seismic rupture: A unified view of the 2020 Mw6.8 Sivrice (Elazığ) eastern Turkey earthquake, J. Geophys. Res. Solid Earth, 126, e2021JB021830, https://doi.org/10.1029/2021JB021830.
- Melgar, D., A. Ganas, T. Taymaz, S. Valkaniotis, B.W. Crowell, V. Kapetanidis, V. Tsironi, S. Yolsal-Qevikbilen and T. Öcalan (2020), Rupture kinematics of 2020 January 24 Mw 6.7 Doğanyol-Sivrice, Turkey earthquake on the East Anatolian Fault Zone imaged by space geodesy, *Geophys. J. Int.*, 223(2), 862–874, https://doi.org/10.1093/gji/ggaa345.
- Pousse-Beltran, L., E. Nissen, E.A. Bergman, M.D. Cambaz, É. Gaudreau, E. Karasözen and F. Tan (2020), The 2020 Mw 6.8 Elazığ (Turkey) earthquake reveals rupture behavior of the East Anatolian Fault, Geophys. Res. Lett., 47, e2020GL088136, https://doi.org/10.1029/2020GL088136.
- Tadapansawut, T., R. Okuwaki, Y. Yagi and S. Yamashita (2021), Rupture process of the 2020 Caribbean earthquake along the Oriente transform fault, involving supershear rupture and geometric complexity of fault. *Geophys. Res. Lett.*, 48, e2020GL090899, urlhttps://doi.org/10.1029/2020GL090899.
- USGS (2023), https://earthquake.usgs.gov/earthquakes/eventpage/us6000jllz, (08/03/23).

Statistics of Collected Data

7.1 Introduction

The ISC Bulletin is based on the parametric data reports received from seismological agencies around the world. With rare exceptions, these reports include the results of waveform review done by analysts at network data centres and observatories. These reports include combinations of various bulletin elements such as event hypocentre estimates, moment tensors, magnitudes, event type and felt and damaging data as well as observations of the various seismic waves recorded at seismic stations.

Data reports are received in different formats that are often agency specific. Once an authorship is recognised, the data are automatically parsed into the ISC database and the original reports filed away to be accessed when necessary. Any reports not recognised or processed automatically are manually checked, corrected and re-processed. This chapter describes the data that are received at the ISC before the production of the reviewed Bulletin.

Notably, the ISC integrates all newly received data reports into the automatic ISC Bulletin (available on-line) soon after these reports are made available to ISC, provided it is done before the submission deadline that currently stands at 12 months following an event occurrence.

With data constantly being reported to the ISC, even after the ISC has published its review, the total data shown as collected, in this chapter, is limited to two years after the time of the associated reading or event, i.e. any hypocentre data collected two years after the event are not reflected in the figures below.

7.2 Summary of Agency Reports to the ISC

A total of 150 agencies have reported data for January 2020 to June 2020. The parsing of these reports into the ISC database is summarised in Table 7.1.

Table 7.1: Summary of the parsing of reports received by the ISC from a total of 150 agencies, containing data for this summary period.

	Number of reports
Total collected	6783
Automatically parsed	5843
Manually parsed	936

Data collected by the ISC consists of multiple data types. These are typically one of:

• Bulletin, hypocentres with associated phase arrival observations.

- Catalogue, hypocentres only.
- Unassociated phase arrival observations.

In Table 7.2, the number of different data types reported to the ISC by each agency is listed. The number of each data type reported by each agency is also listed. Agencies reporting indirectly have their data type additionally listed for the agency that reported it. The agencies reporting indirectly may also have 'hypocentres with associated phases' but with no associated phases listed - this is because the association is being made by the agency reporting directly to the ISC. Summary maps of the agencies and the types of data reported are shown in Figure 7.1 and Figure 7.2.

Table 7.2: Agencies reporting to the ISC for this summary period. Entries in bold are for new or renewed reporting by agencies since the previous six-month period.

Agency	Country	Directly or indirectly	Hypocentres with associ-	Hypocentres without as-	Associated phases	Unassociated phases	Amplitudes
		reporting	ated phases	sociated	1	•	
		(D/I)		phases			
TIR	Albania	D	848	0	12098	0	2935
CRAAG	Algeria	D	207	0	2606	24	0
LPA	Argentina	D	0	0	0	954	0
SJA	Argentina	D	946	1	46598	0	13935
NSSP	Armenia	D	166	0	3052	0	0
AUST	Australia	D	940	0	55885	0	54987
CUPWA	Australia	D	27	0	353	0	0
IDC	Austria	D	18445	0	626061	0	556245
VIE	Austria	D	5137	59	51300	379	50980
AZER	Azerbaijan	D	4432	0	60742	0	0
UCC	Belgium	D	1663	0	11581	35	3671
SCB	Bolivia	D	826	0	12840	0	1880
RHSSO	Bosnia and Herzegovina	D	298	0	5087	3268	0
BGSI	Botswana	D	476	2	5426	1	1456
OSUNB	Brazil	D	79	0	2263	0	0
VAO	Brazil	D	883	21	21479	555	0
SOF	Bulgaria	D	225	0	2801	2948	0
OTT	Canada	D	1343	32	36861	0	4850
PGC	Canada	I OTT	681	0	20702	0	0
GUC	Chile	D	3672	363	106526	8185	33230
BJI	China	D	1230	52	109784	30652	76253
ASIES	Chinese Taipei	D	0	34	0	0	0
TAP	Chinese Taipei	D	13373	0	700250	0	0
RSNC	Colombia	D	17434	217	264071	863	66276
UCR	Costa Rica	D	348	0	17897	0	0
ZAG	Croatia	D	0	0	0	54752	0
SSNC	Cuba	D	4009	1	60893	16	23438
NIC	Cyprus	D	348	0	12934	0	5347
IPEC	Czech Republic	D	531	0	5602	22055	2605
PRU	Czech Republic	D	4759	0	44978	182	10322
WBNET	Czech Republic	D	218	0	3934	0	3934
KEA	Democratic	D	123	0	1368	0	679
KEA	People's Republic of Korea	D	125	o o	1300	O	019
DNK	Denmark	D	2556	2056	37304	26898	9513
OSPL	Dominican Re-	D	2254	0	25684	12	8637
OSFL	public	D	2234	0	25064	12	0037
SDD	Dominican Republic	D	4032	0	77420	380	29087
IGQ	Ecuador	D	140	0	6656	0	0
HLW	Egypt	D	139	0	1320	0	0
SNET	El Salvador	D	1260	$\begin{bmatrix} 0 \\ 4 \end{bmatrix}$	19231	91	0 395
EST	Estonia	I HEL	216	25	0	0	595 0
FIA0	Finland	I HEL	7	0	0	0	0
				"		~	-
HEL	Finland	D	6867	1344	172318	19	32038
CSEM	France	I AWI D	2511	176	0	0	0
IPGP	France	_	0	103	0	0	0
LDG	France	D	1983	65	28112	1	12284

Table 7.2: (continued)

Agency	Country	Directly or indirectly	Hypocentres with associ-	Hypocentres without as-	Associated phases	Unassociated phases	Amplitud
		reporting (D/I)	ated phases	sociated phases			
STR	France	D	3796	1	72453	93	0
PPT	French Polyne- sia	D	977	20	6309	34	6324
TIF	Georgia	D	0	136	0	2894	0
AWI	Georgia	D	4365	9	17344	1086	7572
BGR	Germany	D	559	208	14420	0	5922
BNS	Germany	I BGR	2	208	0	0	0
BRG	Germany	D	0	0	0	9981	3495
CLL	Germany	D	2	0	86	7992	2671
GDNRW	Germany	I BGR	1	4	0	0	0
GFZ	Germany	D	2490	1329	137239	0	153275
HLUG	Germany	I BGR	6	5	0	0	0
LEDBW	Germany	I BGR	22	9	0	0	0
ATH	Greece	D	7898	34	236933	0	66315
THE	Greece	D	3168	0	70293	3507	53759
UPSL	Greece	D	0	4	0	0	0
GCG	Guatemala	D	1459	0	17224	0	2102
HKC	Hong Kong	D	0	0	0	32	0
KRSZO	Hungary	D	705	11	10339	0	4724
REY	Iceland	D	96	3	3493	0	0
HYB	India	D	587	3	1688	7	101
NDI	India India	D	973	5 566	38630	58	15081
NDI DJA	Indonesia	D	5089	49	69497	0	67688
ГЕН	Iran	D	1902	0	20316	0	07000
ГНR	Iran	D	81	0	2163	0	967
ISN	Iraq	D	148	0	1110	0	359
DIAS	Ireland	D	0	0	0	1163	0
GII	Israel	D	2319	0	53806	0	0
GEN	Italy	D	932	0	22816	21	0
MED RCMT	Italy	D	0	185	0	0	0
RISSC	Italy	D	6	0	92	0	0
ROM	Italy	D	8636	129	719389	249075	477855
SARA	Italy	D	20	0	256	0	0
TRI	Italy	D	0	0	0	10006	0
JSN	Jamaica	D	450	8	2280	0	0
JMA	Japan	D	109188	5570	680112	0	15104
NIED	Japan	D	0	678	030112	0	0
SYO	Japan Japan	D	0	0	0	762	0
JSO	Japan Jordan	D	651	7	10543	0	15846
NNC	Kazakhstan	D	9002	68	89761	0	84059
SOME	Kazakhstan	D	4922	108	57575	$\frac{0}{4}$	49348
KNET	Kazaklistan Kyrgyzstan	D		0	8989	0	49348 2928
	J 00		1117				
KRNET LVSN	Kyrgyzstan Latvia	D D	2872 154	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	46669 2425	30	$0 \\ 1438$
GRAL	Latvia Lebanon	D	149	0	1382	1293	1438
GRAL LIT	Lithuania	D	863	861	5513	1293 668	0
MCO	Macao, China	D	0	0	0	28	0
TAN	Madagascar	D	671	0	6065	4	0
ECX	Mexico	D	588	0	15776	0	3226
MEX	Mexico	D	17543	235	305339	$\begin{array}{c} 0 \\ 22 \end{array}$	3220 0
PDG	Montenegro	D	624	255	13351	0	6717
CNRM	Morocco	D	1341	0	14918	0	0
NAM	Namibia	D	111	0	1319	$\frac{0}{32}$	382
OMN	Namibia Nepal	D	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	1267	0	535
OBN	Netherlands	I BGR	0	3	0	0	999 0
NOU	New Caledonia	D D	3804	0	69005	0	4563
WEL	New Zealand	D	11231	65	381720	98397	$\frac{4503}{275872}$
CATAC	Nicaragua	D	2244	1	92698	31	0
SKO	North Macedo- nia	D	0	456	2884	2053	1302
BER	Norway	D	2289	1919	47401	4133	11792
NAO	Norway	D	1962	959	5636	0	1786
NAO OMAN	Oman	D	572	959	28805	0	0
UPA	Oman Panama	D	1561	68	20261	58	985
	Panama Peru						
ARE		I RSNC	2	0	0	0 54979	0
MAN QCP	Philippines Philippines	D D	0 0	6726	0 0	54273 42	13641
. O . F	rumppines	lη	U	0	366	42	0

Table 7.2: (continued)

Agency	Country	Directly or	Hypocentres	Hypocentres	Associated	Unassociated	Amplitude
		indirectly	with associ-	without as- sociated	phases	phases	
		reporting	ated phases				
TITATO	D. I. I	(D/I)	0	phases		20000	000
WAR	Poland	D	0	0	0	20098	906
IGIL	Portugal	D	776	0	3569	0	1187
INMG	Portugal	D	1683	0	79463	15503	40298
PDA	Portugal	I SVSA	1	0	0	0	0
SVSA	Portugal	D	1219	0	40381	10817	32115
BELR	Republic of Be-	D	0	0	0	22552	7569
	larus						
CFUSG	Republic of	D	112	0	3214	287	2104
	Crimea						
KMA	Republic of Ko-	D	12	0	306	0	1
	rea						
BUC	Romania	D	499	0	13517	55188	6152
ASRS	Russia	D	128	3347	4208	0	1581
BYKL	Russia	D	52	0	6934	0	2391
DRS	Russia	I MOS	178	134	0	0	0
FCIAR	Russia	D	170	0	1338	993	602
IDG	Russia	I MOS	0	3	0	0	0
IGKR	Russia	I MOS	o	3	o	o	o
KOLA	Russia	D	2159	146	17684	72	0
KRSC	Russia	D	1125	0	31031	0	0
MIRAS	Russia	D	37	0	1158	0	595
MOS	Russia	D	2838	3757	320632	0	109980
NERS	Russia	D	83	3/5/	2116	0	109980
NORS	Russia	I MOS	28	147	0	0	0
					-		-
SKHL	Russia	D	995	995	21825	26	9303
YARS	Russia	D	354	9	6841	0	4435
SGS	Saudi Arabia	D	1868	0	28768	0	0
BEO	Serbia	D	1023	0	22149	0	0
BRA	Slovakia	D	0	0	0	19319	0
LJU	Slovenia	D	1257	0	19219	3072	6831
PRE	South Africa	D	2004	0	39998	552	13387
MDD	Spain	D	3134	0	74455	0	21079
MRB	Spain	D	714	0	20076	273	8636
SFS	Spain	D	1036	0	17806	41	0
UPP	Sweden	D	2829	1784	33049	0	0
ZUR	Switzerland	D	609	24	14848	0	8943
BKK	Thailand	D	186	5	1328	0	2028
TRN	Trinidad and	D	4892	13	27572	32375	0
11011	Tobago		1002	10	2.0.2	323.3	
TUN	Tunisia	D	30	1	198	5	0
AFAD	Turkey	D	19352	0	540093	0	188447
ISK	Turkey	D	18598	0	275857	1713	159772
AEIC	U.S.A.	I NEIC		2518		0	0
			646		65048		
ANF	U.S.A.	I IRIS	223	769	0	0	0
BUT	U.S.A.	I NEIC	0	582	4907	0	0
GCMT	U.S.A.	D	0	2324	0	0	0
HVO	U.S.A.	I NEIC	0	537	21910	0	0
IRIS	U.S.A.	D	1979	769	268678	0	0
LDO	U.S.A.	I NEIC	0	6	43	0	0
NCEDC	U.S.A.	I NEIC	0	376	21260	0	0
NEIC	U.S.A.	D	22490	13268	2079689	0	1071254
PAS	U.S.A.	I NEIC	0	405	25443	0	0
PMR	U.S.A.	I IRIS	12	0	0	0	0
PNSN	U.S.A.	D	0	76	0	0	0
PTWC	U.S.A.	D	313	0	4435	0	0
REN	U.S.A.	I NEIC	1	1164	19413	0	0
RSPR	U.S.A.	D	10596	2609	199610	0	0
SEA	U.S.A.	I NEIC	0	39	1743	0	0
SLC	U.S.A.	I NEIC	0	1	0	0	0
SLM	U.S.A.	I NEIC	0	66	1471	0	0
TUL	U.S.A.	I NEIC	0	1		0	0
					0		-
TXNET	U.S.A.	D	853	3	41287	170	22108
UUSS	U.S.A.	I NEIC	1	206	6232	0	0
MCSM	Ukraine	D	1270	230	25199	55	13020
SIGU	Ukraine	D	34	34	1436	0	787
DSN	United Arab	D	482	0	6934	0	0
	Emirates	1	I .	I .	I .	1	I .

Table 7.2: (continued)

Agency	Country	Directly or	Hypocentres	Hypocentres	Associated	Unassociated	Amplitudes
		indirectly	with associ-	without as-	phases	phases	
		reporting	ated phases	sociated			
		(D/I)		phases			
BGS	United King-	D	348	19	9287	0	3994
	dom						
ISC-PPSM	United King-	D	0	86	0	0	0
	dom						
ISU	Uzbekistan	D	611	59	2800	12	0
FUNV	Venezuela	D	888	1	8119	0	0
PLV	Viet Nam	D	15	0	226	39	104
BUL	Zimbabwe	D	252	0	1672	263	0

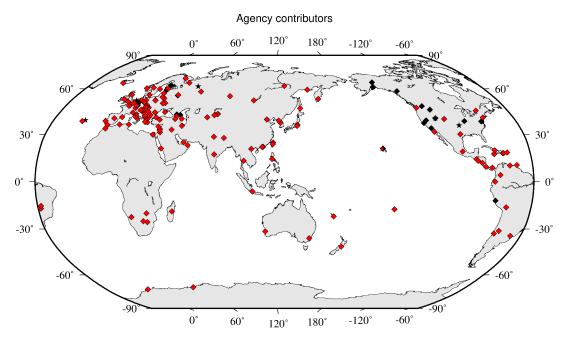


Figure 7.1: Map of agencies that have contributed data to the ISC for this summary period. Agencies that have reported directly to the ISC are shown in red. Those that have reported indirectly (via another agency) are shown in black. Any new or renewed agencies, since the last six-month period, are shown by a star. Each agency is listed in Table 7.2.

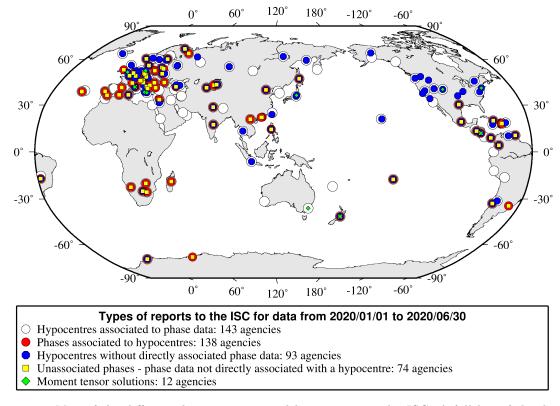


Figure 7.2: Map of the different data types reported by agencies to the ISC. A full list of the data types reported by each agency is shown in Table 7.2.

7.3 Arrival Observations

The collection of phase arrival observations at the ISC has increased dramatically with time. The increase in reported phase arrival observations is shown in Figure 7.3.

The reports with phase data are summarised in Table 7.3. This table is split into three sections, providing information on the reports themselves, the phase data, and the stations reporting the phase data. A map of the stations contributing these phase data is shown in Figure 7.4.

The ISC encourages the reporting of phase arrival times together with amplitude and period measurements whenever feasible. Figure 7.5 shows the percentage of events for which phase arrival times from each station are accompanied with amplitude and period measurements.

Figure 7.6 indicates the number of amplitude and period measurement for each station.

Together with the increase in the number of phases (Figure 7.3), there has been an increase in the number of stations reported to the ISC. The increase in the number of stations is shown in Figure 7.7. This increase can also be seen on the maps for stations reported each decade in Figure 7.8.

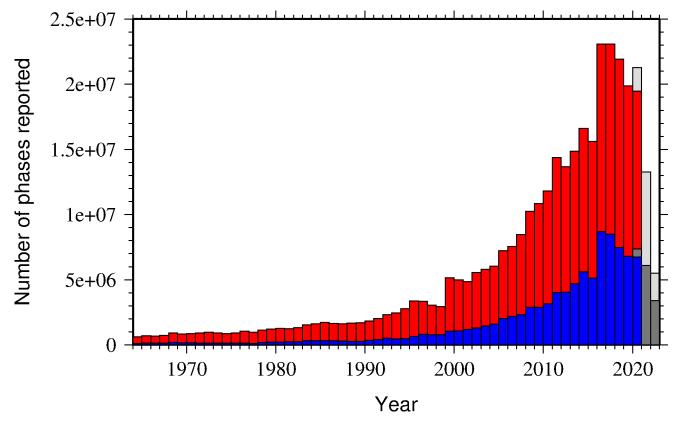


Figure 7.3: Histogram showing the number of phases (red) and number of amplitudes (blue) collected by the ISC for events each year since 1964. The data in grey covers the current period where data are still being collected before the ISC review takes place and is accurate at the time of publication.

Table 7.3: Summary of reports containing phase arrival observations.

Reports with phase arrivals	5854
Reports with phase arrivals including amplitudes	4953
Reports with only phase arrivals (no hypocentres reported)	171
Total phase arrivals received	10816063
Total phase arrival-times received	9997323
Number of duplicate phase arrival-times	809737 (8.1%)
Number of amplitudes received	3981227
Stations reporting phase arrivals	9880
Stations reporting phase arrivals with amplitude data	5677
Max number of stations per report	2423

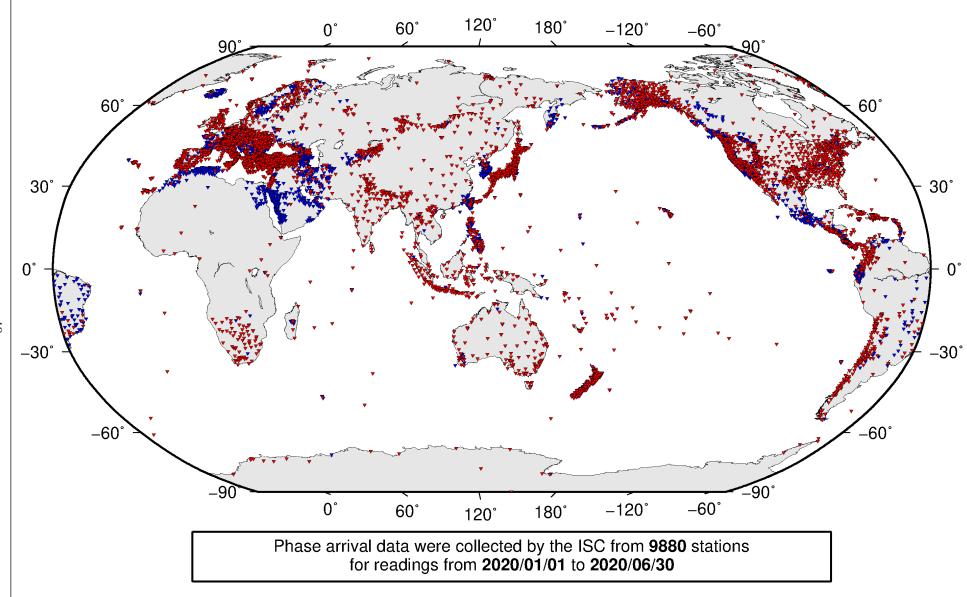


Figure 7.4: Stations contributing phase data to the ISC for readings from January 2020 to the end of June 2020. Stations in blue provided phase arrival times only; stations in red provided both phase arrival times and amplitude data.

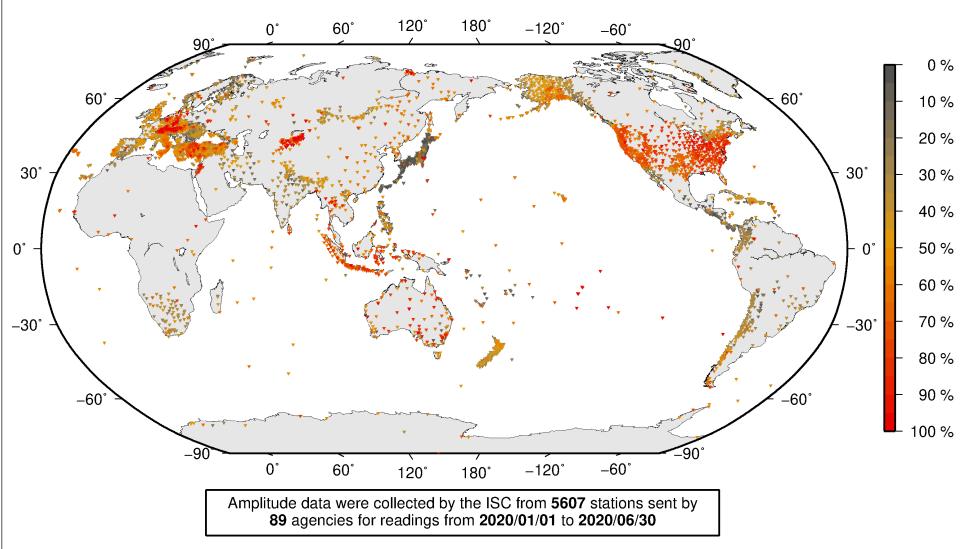
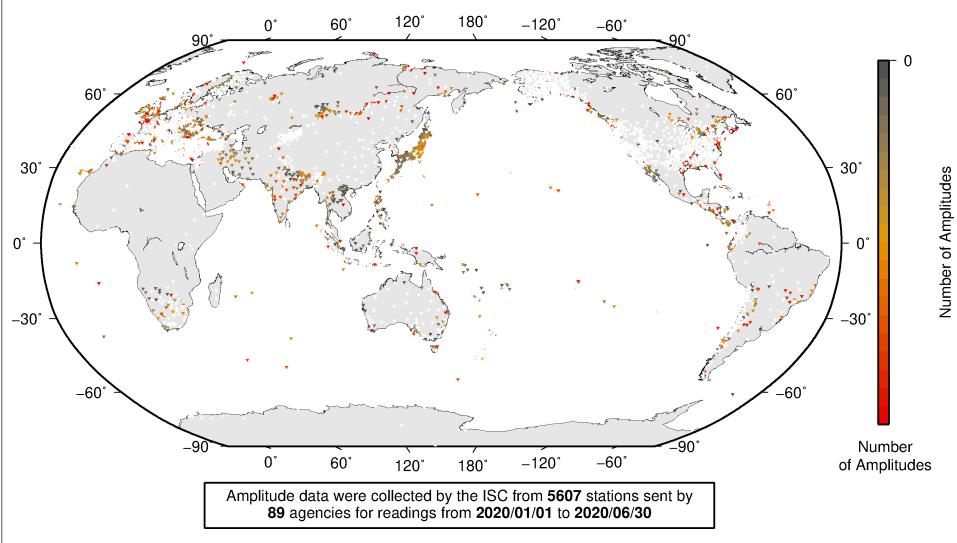



Figure 7.5: Percentage of events for which phase arrival times from each station are accompanied with amplitude and period measurements.

 $\textbf{Figure 7.6:} \ \textit{Number of amplitude and period measurements for each station}.$

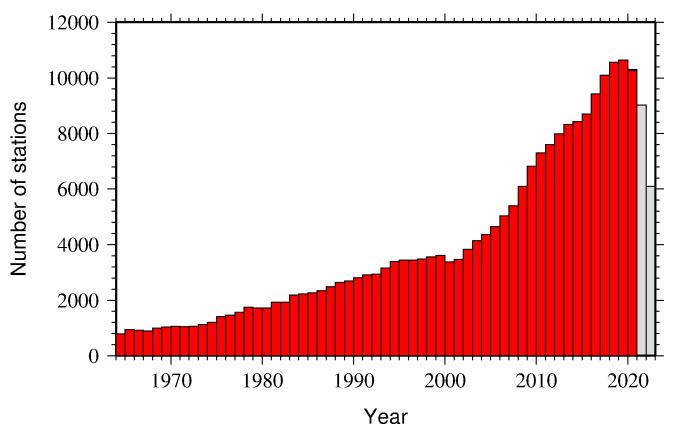


Figure 7.7: Histogram showing the number of stations reporting to the ISC each year since 1964. The data in grey covers the current period where station information is still being collected before the ISC review of events takes place and is accurate at the time of publication.

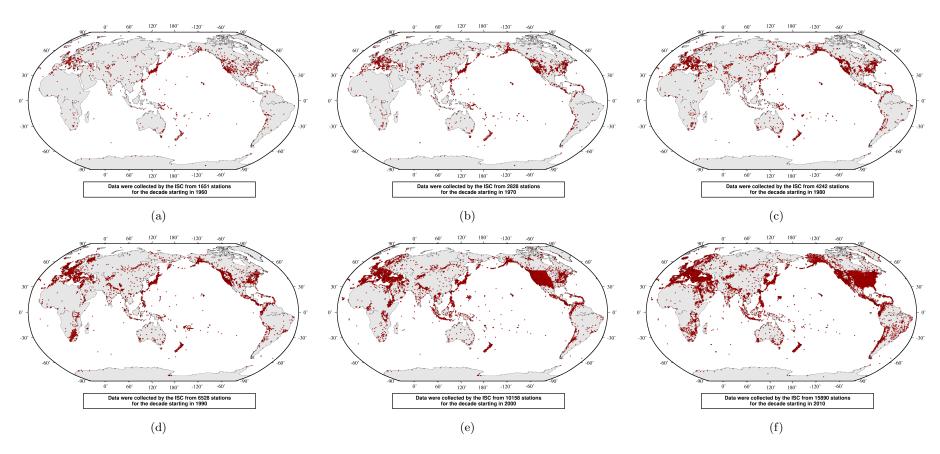


Figure 7.8: Maps showing the stations reported to the ISC for each decade since 1960. Note that the last map covers a shorter time period.

7.4 Hypocentres Collected

The ISC Bulletin groups multiple estimates of hypocentres into individual events, with an appropriate prime hypocentre solution selected. The collection of these hypocentre estimates are described in this section.

The reports containing hypocentres are summarised in Table 7.4. The number of hypocentres collected by the ISC has also increased significantly since 1964, as shown in Figure 7.9. A map of all hypocentres reported to the ISC for this summary period is shown in Figure 7.10. Where a network magnitude was reported with the hypocentre, this is also shown on the map, with preference given to reported values, first of M_W followed by M_S , m_b and M_L respectively (where more than one network magnitude was reported).

Reports with hypocentres

Reports of hypocentres only (no phase readings)

Total hypocentres received

Number of duplicate hypocentres

Agencies determining hypocentres

165

Table 7.4: Summary of the reports containing hypocentres.

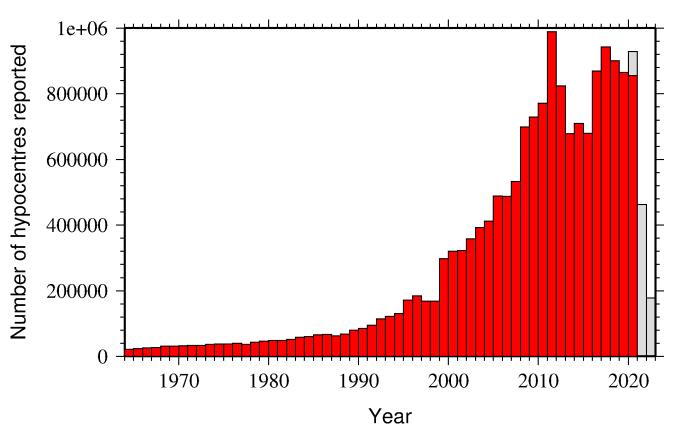


Figure 7.9: Histogram showing the number of hypocentres collected by the ISC for events each year since 1964. For each event, multiple hypocentres may be reported.

All the hypocentres that are reported to the ISC are automatically grouped into events, which form the basis of the ISC Bulletin. For this summary period 489933 hypocentres (including ISC) were grouped

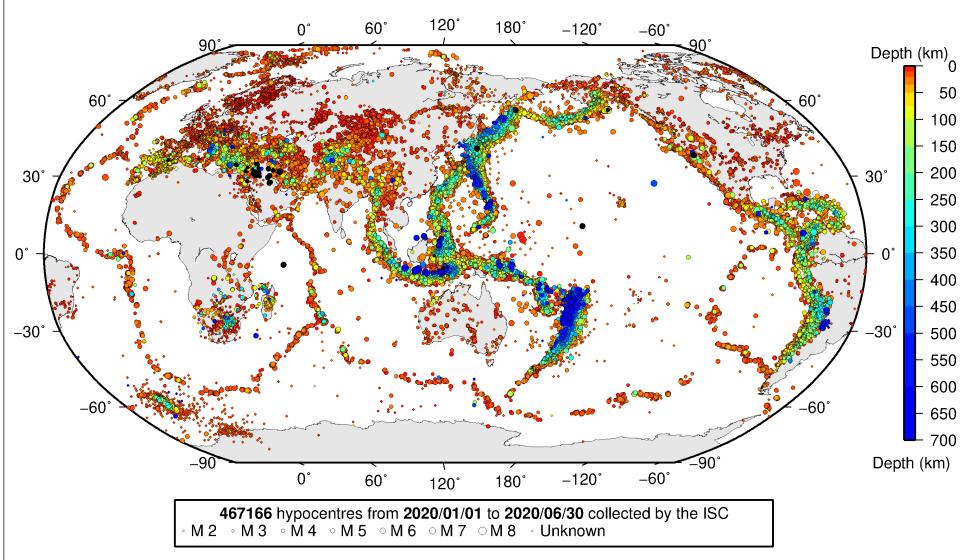


Figure 7.10: Map of all hypocentres collected by the ISC. The scatter shows the large variation of the multiple hypocentres that are reported for each event. The magnitude corresponds with the reported network magnitude. If more than one network magnitude type was reported, preference was given to values of M_W , M_S , m_b and M_L respectively. Compare with Figure 8.2

into 338107 events, the largest of these having 58 hypocentres in one event. The total number of events shown here is the result of an automatic grouping algorithm, and will differ from the total events in the published ISC Bulletin, where both the number of events and the number of hypocentre estimates will have changed due to further analysis. The process of grouping is detailed in Section 10.1.3. Figure 8.2 on page 68 shows a map of all prime hypocentres.

7.5 Collection of Network Magnitude Data

Data contributing agencies normally report earthquake hypocentre solutions along with magnitude estimates. For each seismic event, each agency may report one or more magnitudes of the same or different types. This stems from variability in observational practices at regional, national and global level in computing magnitudes based on a multitude of wave types. Differences in the amplitude measurement algorithm, seismogram component(s) used, frequency range, station distance range as well as the instrument type contribute to the diversity of magnitude types. Table 7.5 provides an overview of the complexity of reported network magnitudes reported for seismic events during the summary period.

Table 7.5: Statistics of magnitude reports to the ISC; M – average magnitude of estimates reported for each event.

	M<3.0	$3.0 \le M < 5.0$	M≥5.0
Number of seismic events	260141	48336	484
Average number of magnitude estimates per event	1.4	3.2	25.0
Average number of magnitudes (by the same agency) per event	1.2	1.8	2.9
Average number of magnitude types per event	1.3	2.5	11.1
Number of magnitude types	26	39	35

Table 7.6 gives the basic description, main features and scientific paper references for the most commonly reported magnitude types.

Table 7.6: Description of the most common magnitude types reported to the ISC.

Magnitude type	Description	References	Comments
M	Unspecified		Often used in real or
			near-real time magni-
			tude estimations
mB	Medium-period and	Gutenberg (1945a);	
	Broad-band body-wave	Gutenberg (1945b);	
	magnitude	IASPEI (2005);	
		IASPEI (2013); Bor-	
		mann et al. (2009) ;	
		Bormann and Dewey	
		(2012)	
mb	Short-period body-wave	IASPEI (2005);	Classical mb based on
	magnitude	IASPEI (2013); Bor-	stations between 21°-
		mann et al. (2009) ;	100° distance
		Bormann and Dewey	
		(2012)	

Table 7.6: continued

Magnitude type	Description	References	Comments
mb1	Short-period body-wave magnitude	IDC (1999) and references therein	Reported only by the IDC; also includes stations at distances less than 21°
mb1mx	Maximum likelihood short-period body-wave magnitude	Ringdal (1976); IDC (1999) and references therein	Reported only by the IDC
mbtmp	short-period body-wave magnitude with depth fixed at the surface	IDC (1999) and references therein	Reported only by the IDC
mbLg	Lg-wave magnitude	Nuttli (1973); IASPEI (2005); IASPEI (2013); Bormann and Dewey (2012)	Also reported as MN
Mc	Coda magnitude		
MD (Md)	Duration magnitude	Bisztricsany (1958); Lee et al. (1972)	
ME (Me)	Energy magnitude	Choy and Boatwright (1995)	Reported only by NEIC
MJMA	JMA magnitude	$Tsuboi\ (1954)$	Reported only by JMA
ML (Ml)	Local (Richter) magnitude	Richter (1935); Hutton and Boore (1987); IASPEI (2005); IASPEI (2013)	
MLSn	Local magnitude calculated for Sn phases	Balfour et al. (2008)	Reported by PGC only for earthquakes west of the Cascadia subduc- tion zone
MLv	Local (Richter) magnitude computed from the vertical component		Reported only by DJA and BKK
MN (Mn)	Lg-wave magnitude	Nuttli (1973); IASPEI (2005)	Also reported as mbLg
MS (Ms)	Surface-wave magnitude	Gutenberg (1945c); Vaněk et al. (1962); IASPEI (2005)	Classical surface-wave magnitude computed from station between 20°-160° distance
Ms1	Surface-wave magnitude	IDC (1999) and references therein	Reported only by the IDC; also includes stations at distances less than 20°
ms1mx	Maximum likelihood surface-wave magnitude	Ringdal (1976); IDC (1999) and references therein	Reported only by the IDC

Table 7.6: continued

Magnitude type	Description	References	Comments
Ms7	Surface-wave magni-	Bormann et al. (2007)	Reported only by BJI
	tude		and computed from
			records of a Chinese-
			made long-period
			seismograph in the
			distance range 3°-177°
MW (Mw)	Moment magnitude	Kanamori (1977);	Computed according to
		Dziewonski et al. (1981)	the $IASPEI$ (2005) and
			IASPEI (2013) stan-
			dard formula
Mw(mB)	Proxy Mw based on mB	Bormann and Saul	Reported only by DJA
		(2008)	and BKK
Mwp	Moment magnitude	Tsuboi et al. (1995)	Reported only by DJA
	from P-waves		and BKK and used in
			rapid response
mbh	Unknown		
mbv	Unknown		
MG	Unspecified type		Contact contributor
Mm	Unknown		
msh	Unknown		
MSV	Unknown		

Table 7.7 lists all magnitude types reported, the corresponding number of events in the ISC Bulletin and the agency codes along with the number of earthquakes.

Table 7.7: Summary of magnitude types in the ISC Bulletin for this summary period. The number of events with values for each magnitude type is listed. The agencies reporting these magnitude types are listed, together with the total number of values reported.

Magnitude type	Events	Agencies reporting magnitude type (number of values)
M	17850	WEL (10575), MOS (3105), CATAC (2104), GFZ (1938),
		BKK (159), IGQ (103), PRU (24), INMG (23), KRSZO (9),
		OTT (1)
mb	25393	IDC (16819), NEIC (7375), NNC (4217), KRNET (2869),
		GFZ (1919), VIE (1860), MOS (1698), DJA (1466), BJI
		(1009), RSNC (513), NOU (489), VAO (354), CATAC
		(266), MCSM (238), BGR (234), OMAN (127), MDD (112),
		CFUSG (98), IASPEI (49), DSN (46), BKK (37), SIGU (34),
		INMG (33), THE (19), NDI (13), IGQ (11), AUST (11), OS-
		UNB (10), SFS (9), ANF (8), YARS (8), PDG (8), SSNC (7),
		ROM (7), BGS (4), GUC (4), KMA (3), DNK (2), CRAAG
		(2), STR (2), IGIL (2), SCB (2), PTWC (1)
mB	2288	BJI (999), DJA (735), WEL (428), RSNC (203), CATAC
		(195), BKK (34), GFZ (10), IGQ (6), MCSM (2), KRSZO
		(1)
MB	253	NAO (202), SCB (44), SSNC (7)
mB_BB	26	BGR (26)
mb_Lg	3474	MDD (2984), NEIC (468), OTT (28)

Table 7.7: Continued.

Magnitude type	Events	Agencies reporting magnitude type (number of values)		
mBc	1	RSNC (1)		
mbR	78	VAO (78)		
mbtmp	18281	IDC (18281)		
Mc	25	KRSC (25)		
MD	18659	RSPR (8883), SSNC (3417), SDD (3306), LDG (1524), GCG (1347), TRN (1203), ECX (444), JMA (373), JSN (303), NCEDC (262), GII (226), SOF (192), GRAL (149), TIR (146), MEX (142), ROM (121), UPA (111), CFUSG (104), PDG (82), PNSN (67), SLM (66), HLW (56), HVO (34), SIGU (26), TUN (26), JSO (16), UUSS (10), SNET (10), DNK (8), STR (3), SEA (2), SJA (1)		
Mjma	224	BKK (116), IGQ (106), RSNC (4), JSO (3), WEL (1)		
ML	148108	AFAD (18761), ISK (18593), RSNC (17225), TAP (13372), IDC (10526), NEIC (10213), WEL (9972), ROM (8284), ATH (7853), HEL (7013), AZER (4422), GUC (3884), UPP (3877), SSNC (3564), SDD (3315), VIE (2981), AEIC (2599), INMG (2271), OSPL (2249), KOLA (1974), PRE (1964), TEH (1901), SGS (1864), LDG (1486), DNK (1453), SFS (1445), BER (1349), SNET (1255), LJU (1196), REN (1181), KRSC (1027), BEO (1019), UPA (941), CNRM (927), SJA (876), GEN (825), TIR (812), SCB (806), TXNET (772), GCG (767), MRB (714), BUT (583), KRSZO (574), PDG (562), ANF (549), IPEC (531), ECX (509), IGIL (508), HVO (500), BUC (499), PGC (484), SKO (436), NDI (404), TAN (403), RSPR (380), PAS (366), NIC (348), YARS (345), NAO (340), BGSI (302), RHSSO (298), UCC (265), AUST (257), KNET (231), OMAN (218), WBNET (216), UUSS (194), DSN (185), PTWC (180), BJI (174), CRAAG (156), LVSN (149), HLW (139), ISN (138), BGS (128), BGR (106), BKK (94), NOU (86), PPT (78), THR (76), IGQ (75), NCEDC (73), SEA (57), KEA (56), DMN (45), MIRAS (36), OTT (33), JSO (27), BNS (23), GFZ (21), SARA (20), CUPWA (19), SIGU (17), PLV (15), RISSC (6), LDO (6), FIA0 (4), KMA (4), NAM (3), REY (3), VAO (2), CSEM (1), CLL (1)		
MLh	3747	THE (3127), ZUR (489), ASRS (127), RSNC (4)		
MLSn	197	PGC (197)		
MLv	26475	WEL (10651), DJA (4378), STR (3791), RSNC (3625), CATAC (2173), NOU (1018), SFS (730), MCSM (256), BKK (165), IGQ (121), JSO (104), GFZ (14), KRSZO (9), OTT (2), OSUNB (2), ASRS (1), AUST (1)		
MN	624	OTT (624)		
mpv	4596	NNC (4596)		
MPVA	208	MOS (174), NORS (173)		
mR	49	OSUNB (49)		
11111	4 <i>9</i>	ODUND (49)		

Table 7.7: Continued.

Magnitude type	Events	Agencies reporting magnitude type (number of values)			
MS	14692	IDC (8192), MAN (6725), BJI (794), MOS (418), NSSP			
		(165), BGR (148), SOME (39), OMAN (24), INMG (22),			
		VIE (20), IASPEI (17), GUC (6), DSN (5), DNK (4), SSNC			
		(2), YARS (1), IGIL (1), PPT (1), MIRAS (1)			
Ms(BB)	89	IGQ (84), RSNC (3), BKK (1), JSO (1)			
Ms7	795	BJI (795)			
Ms_20	157	NEIC (157)			
Ms_VX	1	NEIC (1)			
MSH	106	CFUSG (106)			
MV	108700	JMA (108700)			
MW	9768	SDD (3190), GCMT (1162), SJA (870), UPA (746), NIED			
		(678), FUNV (612), SSNC (556), BER (548), AFAD (536),			
		GFZ (504), NDI (393), UCR (323), PGC (203), GCG (154),			
		MED_RCMT (106), JMA (104), IPGP (103), DJA (80),			
		JSN (66), WEL (63), ASIES (34), ATH (30), ROM (19),			
		INMG (12), UPSL (4), RSNC (3), SNET (1), GUC (1), OS-			
		UNB (1)			
Mw(mB)	645	WEL (407), CATAC (190), BKK (33), GFZ (10), IGQ (6)			
Mwb	156	NEIC (156)			
MwMwp	54	CATAC (47), BKK (4), IGQ (3)			
Mwp	309	PTWC (127), DJA (127), CATAC (50), SARA (19), RSNC			
		(19), OMAN (9), THE (7), BKK (4), ROM (4), IGQ (3)			
Mwpd	3	ROM (3)			
Mwr	704	NEIC (423), SLM (243), GUC (121), NCEDC (41), PAS			
		(38), OTT (10), UUSS (3)			
Mws	984	GII (984)			
Mww	657	NEIC (657), GUC (12)			

The most commonly reported magnitude types are short-period body-wave, surface-wave, local (or Richter), moment, duration and JMA magnitude type. For a given earthquake, the number and type of reported magnitudes greatly vary depending on its size and location. The large earthquake of October 25, 2010 gives an example of the multitude of reported magnitude types for large earthquakes (Listing 7.1). Different magnitude estimates come from global monitoring agencies such as the IDC, NEIC and GCMT, a local agency (GUC) and other agencies, such as MOS and BJI, providing estimates based on the analysis of their networks. The same agency may report different magnitude types as well as several estimates of the same magnitude type, such as NEIC estimates of Mw obtained from W-phase, centroid and body-wave inversions.

Listing 7.1: Example of reported magnitudes for a large event

An example of a relatively small earthquake that occurred in northern Italy for which we received magnitude reports of mostly local and duration type from six agencies in Italy, France and Austria is given in Listing 7.2.

Listing 7.2: Example of reported magnitudes for a small event

Figure 7.11 shows a distribution of the number of agencies reporting magnitude estimates to the ISC according to the magnitude value. The peak of the distribution corresponds to small earthquakes where many local agencies report local and/or duration magnitudes. The number of contributing agencies rapidly decreases for earthquakes of approximately magnitude 5.5 and above, where magnitudes are mostly given by global monitoring agencies.

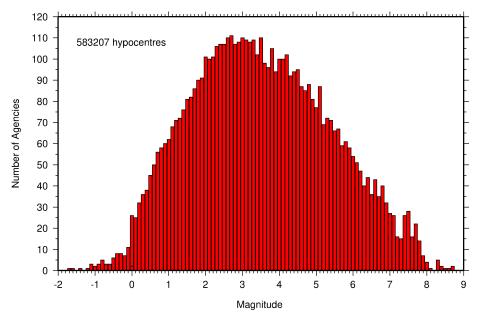


Figure 7.11: Histogram showing the number of agencies that reported network magnitude values. All magnitude types are included.

7.6 Moment Tensor Solutions

The ISC Bulletin publishes moment tensor solutions, which are reported to the ISC by other agencies. The collection of moment tensor solutions is summarised in Table 7.8. A histogram showing all moment tensor solutions collected throughout the ISC history is shown in Figure 7.12. Several moment tensor solutions from different authors and different moment tensor solutions calculated by different methods from the same agency may be present for the same event.

Table 7.8: Summary of reports containing moment tensor solutions.

Reports with Moment Tensors	1332
Total moment tensors received	10604
Agencies reporting moment tensors	12

The number of moment tensors for this summary period, reported by each agency, is shown in Table 7.9. The moment tensor solutions are plotted in Figure 7.13.

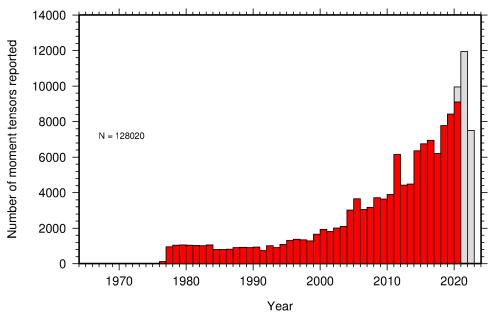
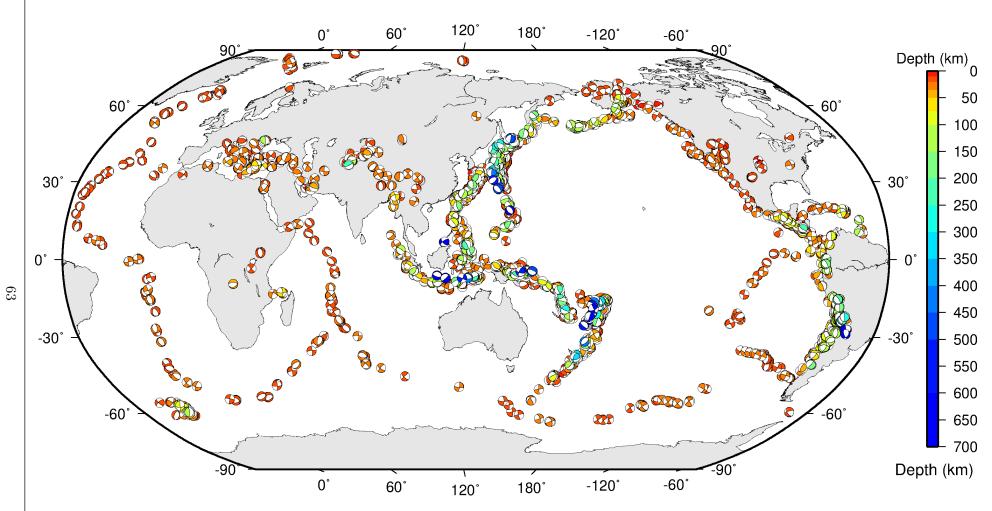



Figure 7.12: Histogram showing the number of moment tensors reported to the ISC since 1964. The regions in grey represent data that are still being actively collected.

ISC Bulletin: 4560 focal mechanism solutions for 2442 events from 2020/01/01 to 2020/06/30

Figure 7.13: Map of all moment tensor solutions in the ISC Bulletin for this summary period.

Agency	Number of moment	Agency	Number of moment
	tensor solutions		tensor solutions
NEIC	1367	UCR	23
GCMT	1162	ROM	19
NIED	678	UPA	9
CATAC	601	MOS	8
GFZ	443	ECX	5
TAN	355	UPSL	4
IPGP	203	GCG	3
MED_RCMT	106	MEX	3
ISC-PPSM	86	SSNC	2
ASIES	68	PLV	2
PNSN	68	DNK	1
WEL	64	BGS	1
ATH	30		

Table 7.9: Summary of moment tensor solutions in the ISC Bulletin reported by each agency.

7.7 Timing of Data Collection

Here we present the timing of reports to the ISC. Please note, this does not include provisional alerts, which are replaced at a later stage. Instead, it reflects the final data sent to the ISC. The absolute timing of all hypocentre reports, regardless of magnitude, is shown in Figure 7.14. In Figure 7.15 the reports are grouped into one of six categories - from within three days of an event origin time, to over one year. The histogram shows the distribution with magnitude (for hypocentres where a network magnitude was reported) for each category, whilst the map shows the geographic distribution of the reported hypocentres.

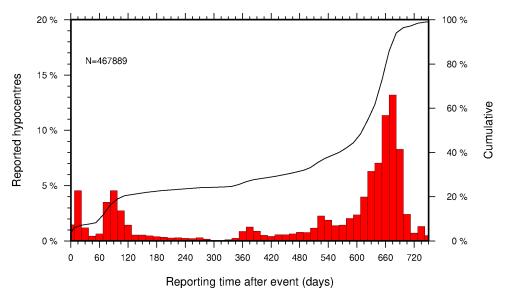
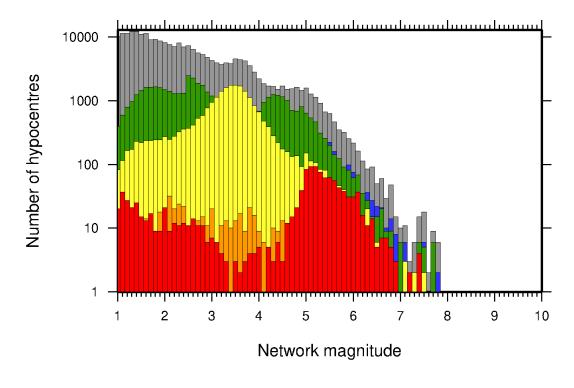



Figure 7.14: Histogram showing the timing of final reports of the hypocentres (total of N) to the ISC. The cumulative frequency is shown by the solid line.

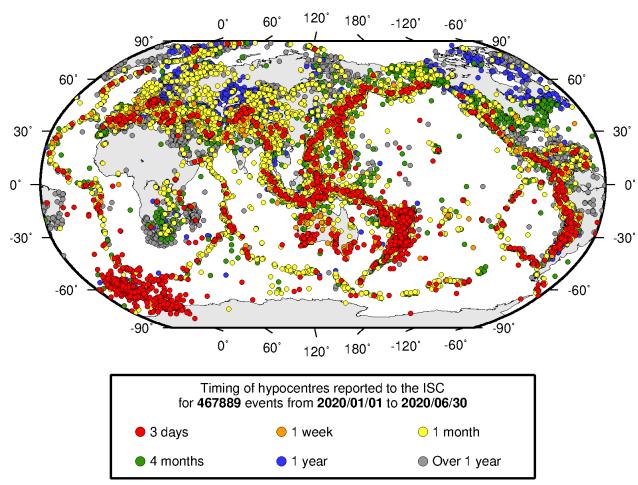


Figure 7.15: Timing of hypocentres reported to the ISC. The colours show the time after the origin time that the corresponding hypocentre was reported. The histogram shows the distribution with magnitude. If more than one network magnitude was reported, preference was given to a value of M_W followed by M_S , m_b and M_L respectively; all reported hypocentres are included on the map. Note: early reported hypocentres are plotted over later reported hypocentres, on both the map and histogram.

Overview of the ISC Bulletin

This chapter provides an overview of the seismic event data in the ISC Bulletin. We indicate the differences between all ISC events and those ISC events that are reviewed or located. We describe the wealth of phase arrivals and phase amplitudes and periods observed at seismic stations worldwide, reported in the ISC Bulletin and often used in the ISC location and magnitude determination. Finally, we make some comparisons of the ISC magnitudes with those reported by other agencies, and discuss magnitude completeness of the ISC Bulletin.

8.1 Events

The ISC Bulletin had 327849 reported events in the summary period between January and June 2020. Some 91% (301407) of the events were identified as earthquakes, the rest (26442) were of anthropogenic origin (including mining and other chemical explosions, rockbursts and induced events) or of unknown origin. As discussed in Section 10.1.3. In this summary period 9% of the events were reviewed and 6% of the events were located by the ISC. For events that are not located by the ISC, the prime hypocentre is identified according to the rules described in Section 10.1.3.

Of the 11114548 reported phase observations, 34% are associated to ISC-reviewed events, and 32% are associated to events selected for ISC location. Note that all large events are reviewed and located by the ISC. Since large events are globally recorded and thus reported by stations worldwide, they will provide the bulk of observations. This explains why only about one-fifth of the events in any given month is reviewed although the number of phases associated to reviewed events has increased nearly exponentially in the past decades.

Figure 8.1 shows the daily number of events throughout the summary period. Figure 8.2 shows the locations of the events in the ISC Bulletin; the locations of ISC-reviewed and ISC-located events are shown in Figures 8.3 and 8.4, respectively.

Figure 8.5 shows the hypocentral depth distributions of events in the ISC Bulletin for the summary period. The vast majority of events occur in the Earth's crust. Note that the peaks at 0, 10, 35 km, and at every 50 km intervals deeper than 100 km are artifacts of analyst practices of fixing the depth to a nominal value when the depth cannot be reliably resolved.

Figure 8.6 shows the depth distribution of free-depth solutions in the ISC Bulletin. The depth of a hypocentre reported to the ISC is assumed to be determined as a free parameter, unless it is explicitly labelled as a fixed-depth solution. On the other hand, as described in Section 10.1.4, the ISC locator attempts to get a free-depth solution if, and only if, there is resolution for the depth in the data, i.e. if there is a local network and/or sufficient depth-sensitive phases are reported.

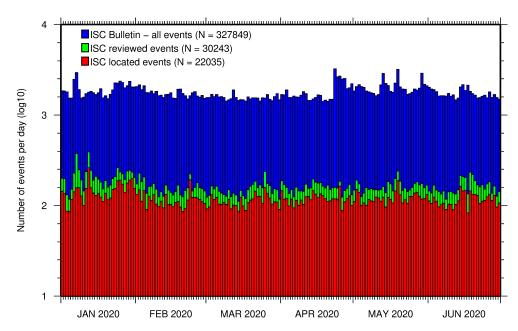


Figure 8.1: Histogram showing the number of events in the ISC Bulletin for the current summary period. The vertical scale is logarithmic.

Figure 8.7 shows the depth distribution of fixed-depth solutions in the ISC Bulletin. Except for a fraction of events whose depth is fixed to a shallow depth, this set comprises mostly ISC-located events. If there is no resolution for depth in the data, the ISC locator fixes the depth to a value obtained from the ISC default depth grid file, or if no default depth exists for that location, to a nominal default depth assigned to each Flinn-Engdahl region (see details in Section 10.1.4). During the ISC review editors are inclined to accept the depth obtained from the default depth grid, but they typically change the depth of those solutions that have a nominal (10 or 35 km) depth. When doing so, they usually fix the depth to a round number, preferably divisible by 50.

For events selected for ISC location, the number of stations typically increases as arrival data reported by several agencies are grouped together and associated to the prime hypocentre. Consequently, the network geometry, characterised by the secondary azimuthal gap (the largest azimuthal gap a single station closes), is typically improved. Figure 8.8 illustrates that the secondary azimuthal gap is indeed generally smaller for ISC-located events than that for all events in the ISC Bulletin. Figure 8.9 shows the distribution of the number of associated stations. For large events the number of associated stations is usually larger for ISC-located events than for any of the reported event bulletins. On the other hand, events with just a few reporting stations are rarely selected for ISC location. The same is true for the number of defining stations (stations with at least one defining phase that were used in the location). Figure 8.10 indicates that because the reported observations from multiple agencies are associated to the prime, large ISC-located events typically have a larger number of defining stations than any of the reported event bulletins.

The formal uncertainty estimates are also typically smaller for ISC-located events. Figure 8.11 shows the distribution of the area of the 90% confidence error ellipse for ISC-located events during the summary period. The distribution suffers from a long tail indicating a few poorly constrained event locations. Nevertheless, half of the events are characterised by an error ellipse with an area less than 160 km^2 , 90% of the events have an error ellipse area less than 1092 km^2 , and 95% of the events have an error ellipse

International Seismological Centre

ISC Bulletin - all events

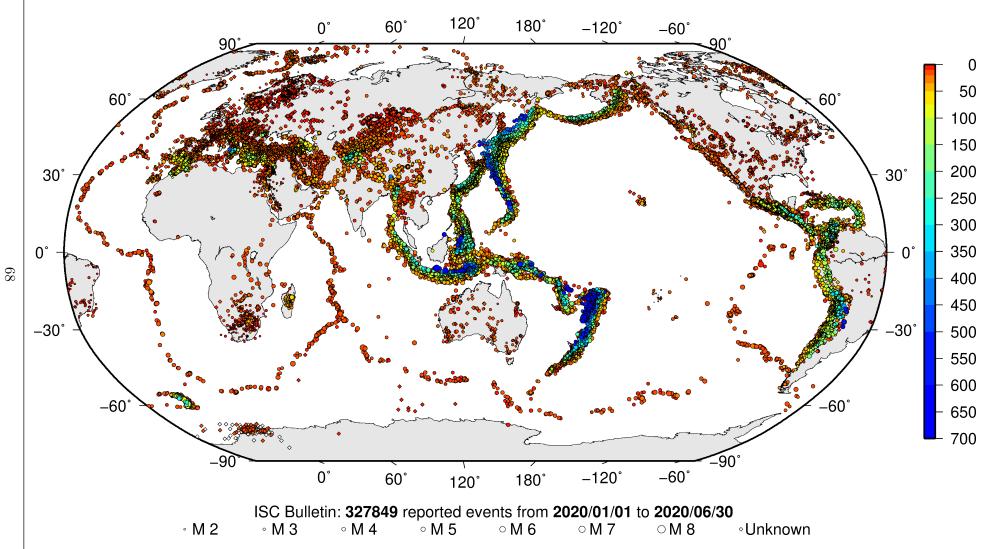


Figure 8.2: Map of all events in the ISC Bulletin. Prime hypocentre locations are shown. Compare with Figure 7.10.

ISC Bulletin – reviewed events

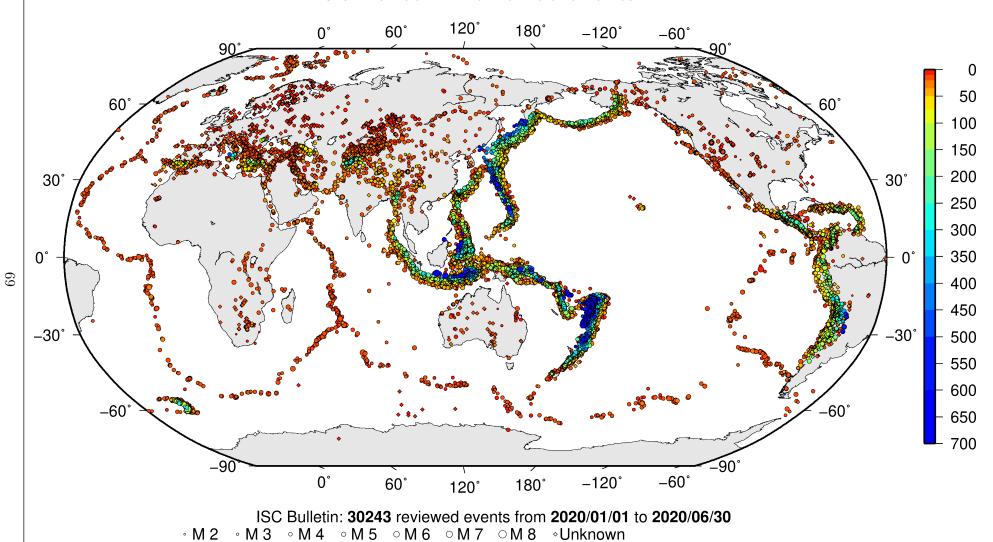
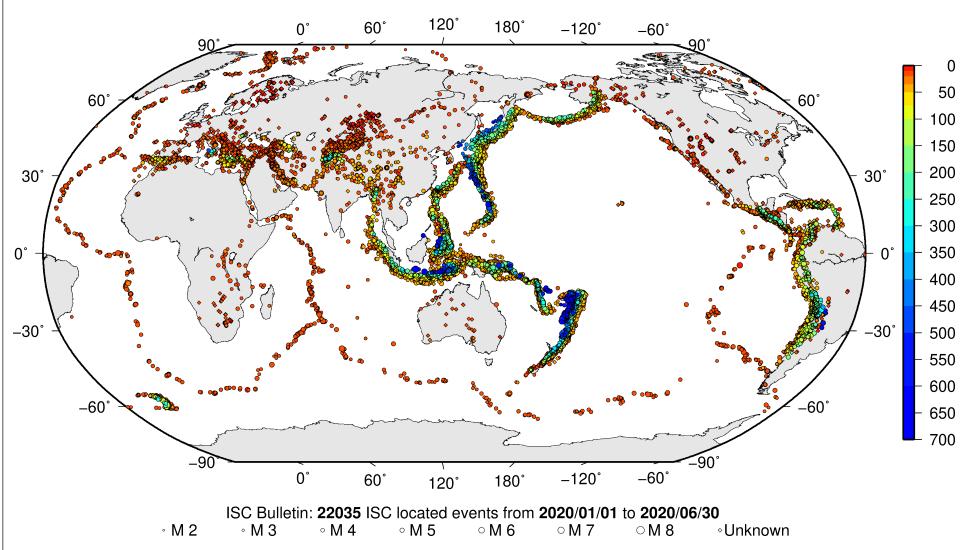



Figure 8.3: Map of all events reviewed by the ISC for this time period. Prime hypocentre locations are shown.

ISC Bulletin - ISC located events

70

Figure 8.4: Map of all events located by the ISC for this time period. ISC determined hypocentre locations are shown.

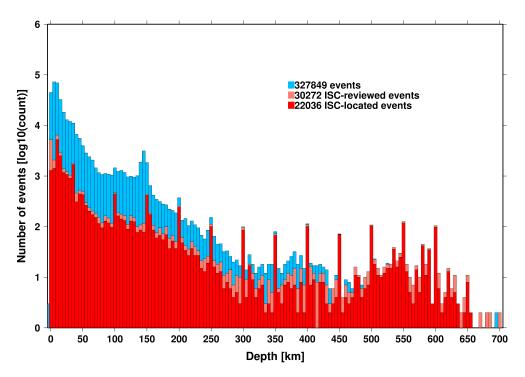


Figure 8.5: Distribution of event depths in the ISC Bulletin (blue) and for the ISC-reviewed (pink) and the ISC-located (red) events during the summary period. All ISC-located events are reviewed, but not all reviewed events are located by the ISC. The vertical scale is logarithmic.

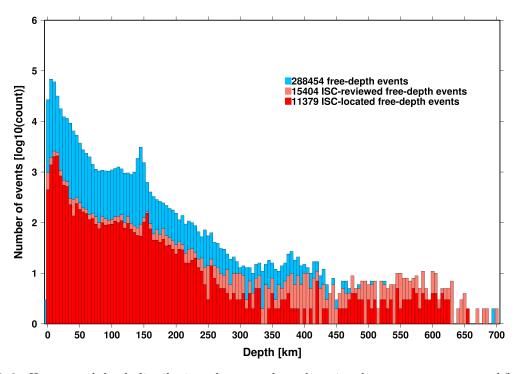


Figure 8.6: Hypocentral depth distribution of events where the prime hypocentres are reported/located with a free-depth solution in the ISC Bulletin. The vertical scale is logarithmic.

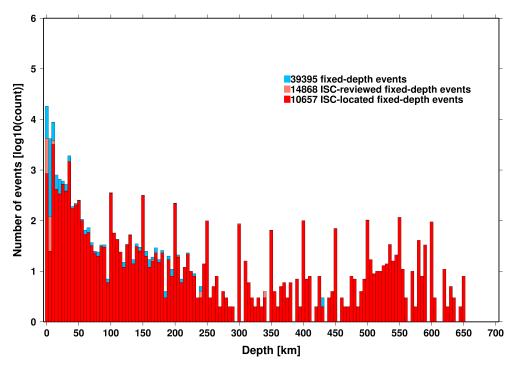


Figure 8.7: Hypocentral depth distribution of events where the prime hypocentres are reported/located with a fixed-depth solution in the ISC Bulletin. The vertical scale is logarithmic.

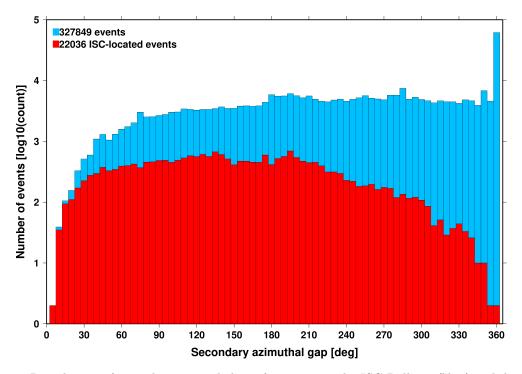


Figure 8.8: Distribution of secondary azimuthal gap for events in the ISC Bulletin (blue) and those selected for ISC location (red). The vertical scale is logarithmic.

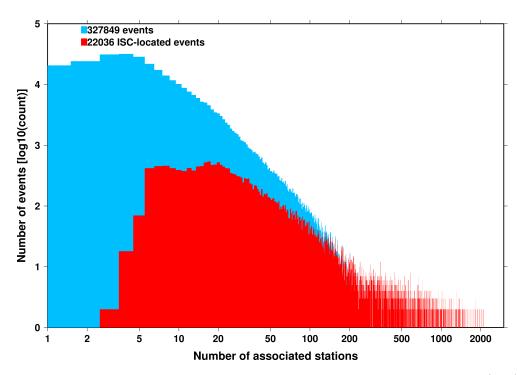


Figure 8.9: Distribution of the number of associated stations for events in the ISC Bulletin (blue) and those selected for ISC location (red). The vertical scale is logarithmic.

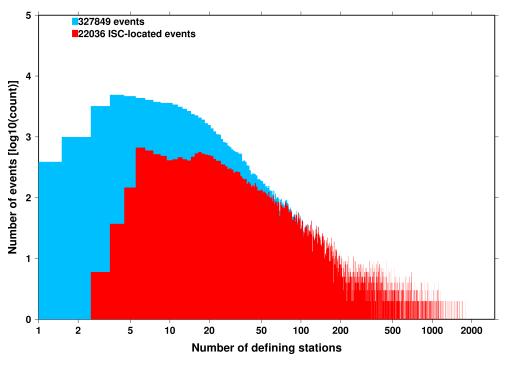


Figure 8.10: Distribution of the number of defining stations for events in the ISC Bulletin (blue) and those selected for ISC location (red). The vertical scale is logarithmic.

area less than 2010 km^2 .

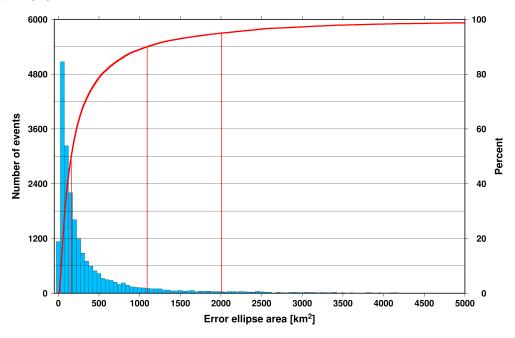


Figure 8.11: Distribution of the area of the 90% confidence error ellipse of the ISC-located events. Vertical red lines indicate the 50th, 90th and 95th percentile values.

Figure 8.12 shows one of the major characteristic features of the ISC location algorithm (Bondár and Storchak, 2011). Because the ISC locator accounts for correlated travel-time prediction errors due to unmodelled velocity heterogeneities along similar ray paths, the area of the 90% confidence error ellipse does not decrease indefinitely with increasing number of stations, but levels off once the information carried by the network geometry is exhausted, thus providing more realistic uncertainty estimates.

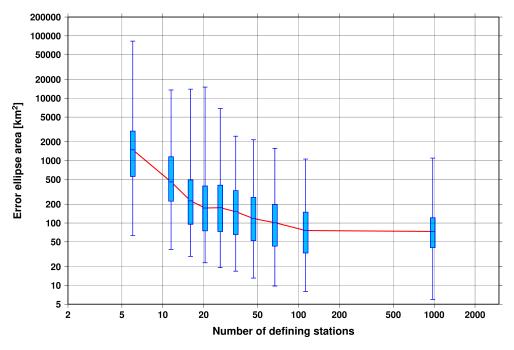
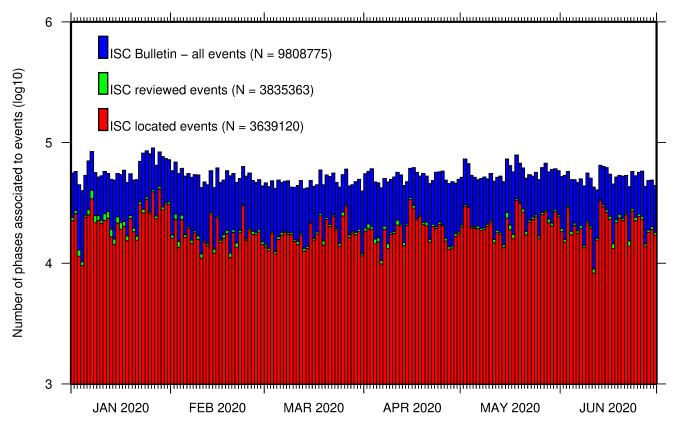



Figure 8.12: Box-and-whisker plot of the area of the 90% confidence error ellipse of the ISC-located events as a function of the number of defining stations. Each box represents one-tenth-worth of the total number of data. The red line indicates the median 90% confidence error ellipse area.

8.2 Seismic Phases and Travel-Time Residuals

The number of phases that are associated to events over the summary period in the ISC Bulletin is shown in Figure 8.13. Phase types and their total number in the ISC Bulletin is shown in the Appendix, Table 10.3. A summary of phase types is indicated in Figure 8.14.

Figure 8.13: Histogram showing the number of phases (N) that the ISC has associated to events within the ISC Bulletin for the current summary period.

In computing ISC locations, the current (for events since 2009) ISC location algorithm ($Bond\acute{a}r$ and Storchak, 2011) uses all ak135 phases where possible. Within the Bulletin, the phases that contribute to an ISC location are labelled as $time\ defining$. In this section, we summarise these time defining phases.

In Figure 8.15, the number of defining phases is shown in a histogram over the summary period. Each defining phase is listed in Table 8.1, which also provides a summary of the number of defining phases per event. A pie chart showing the proportion of defining phases is shown in Figure 8.16. Figure 8.17 shows travel times of seismic waves. The distribution of residuals for these defining phases is shown for the top five phases in Figures 8.18 through 8.22.

Table 8.1: Numbers of 'time defining' phases (N) within the ISC Bulletin for 22035 ISC located events.

Phase	Number of 'defining' phases	Number of events	Max per event	Median per event
P	959056	14179	2203	13
Pn	669786	20191	799	16
Sn	225371	17119	205	7
Pb	114478	10228	130	7
Pg	99091	8476	169	7
Sg	74071	7965	147	6
Sb	73007	9670	106	5
S	46251	3562	542	3

Table 8.1: (continued)

Phase	Number of 'defining' phases	Number of events	Max per event	Median per event
PKPdf	44854	4190	979	3
PKiKP	26499	3144	268	2
PKPbc	21347	3351	228	2
PKPab	14941	2403	225	2
PcP	13863	3544	88	2
pP	9113	1378	136	3
Pdif	8609	934	366	2
PP	8528	1141	192	2
ScP	4974	1105	225	2
SS	4164	926	53	3
sP	3797	1057	66	$\stackrel{\circ}{2}$
SKSac	3039	437	172	2
PKKPbc	1917	448	65	$\frac{1}{2}$
pwP	1554	534	57	$\frac{1}{2}$
SnSn	1274	656	10	1
PnPn	1103	611	15	1
SKPbc	1033	313	81	2
ScS	973	306	27	1
pPKPdf	816	294	35	2
sS	719	374	14	1
P'P'df	598	172	29	2
SKiKP	584	249	47	1
SKPdf			41	1
	460	136		1
PKKPdf	418	210	13	
PKKPab	401	204	18	1
pPKPbc	369	176	17	1
PS	341	155	33	2
pPKPab	312	133	17	1
SKPab	234	135	17	1
sPKPdf	231	147	19	1
P'P'bc	190	115	5	1
SKSdf	179	148	5	1
PcS	162	100	7	1
PnS	151	114	5	1
SKKSac	139	86	13	1
SP	139	45	34	1
Sdif	130	58	29	1
sPKPab	119	46	24	1
SKKPbc	111	34	16	2
pS	94	82	3	1
pPKiKP	87	28	15	2
pPdif	73	46	12	1
sPKPbc	71	51	4	1
SKKSdf	66	66	1	1
PKSdf	62	45	5	1
P'P'ab	45	29	4	1
sPdif	36	18	18	1
SKKPdf	28	22	3	1
SKKPab	21	12	4	2
SPn	17	14	4	1
SbSb	12	10	2	1
sPn	12	7	4	1
PKSbc	10	6	5	1
sPKiKP	9	8	2	1
sSKSac	9	7	2	1
PbPb	8	7	2	1
PgPg	2	2	1	1
sSdif	2	2	1	1
S'S'ac	2	2	1	1
pSKSdf	1	1	1	1
pSKSac	1	1	1	1
pSdif	1	1	1	1

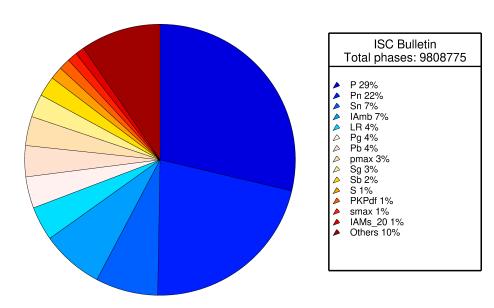


Figure 8.14: Pie chart showing the fraction of various phase types in the ISC Bulletin for this summary period.

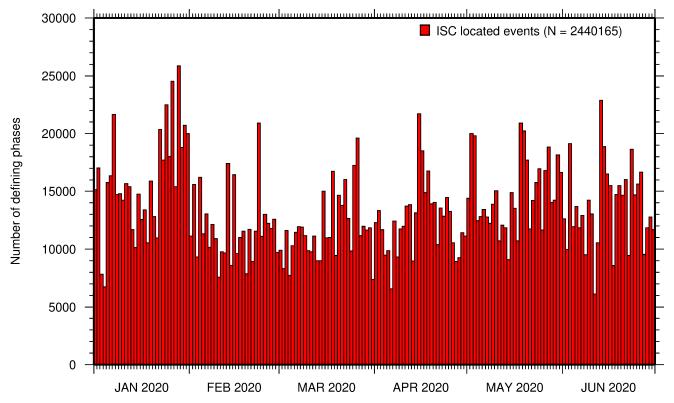


Figure 8.15: Histogram showing the number of defining phases in the ISC Bulletin, for events located by the ISC.

Figure 8.16: Pie chart showing the defining phases in the ISC Bulletin, for events located by the ISC. A complete list of defining phases is shown in Table 8.1.

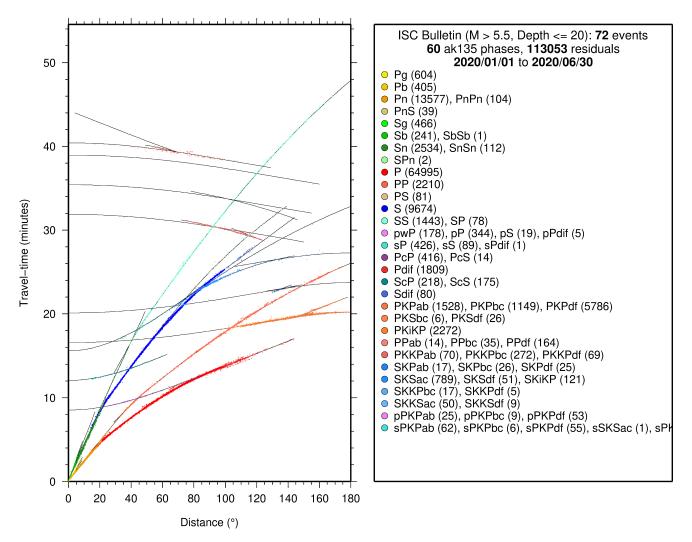


Figure 8.17: Distribution of travel-time observations in the ISC Bulletin for events with M > 5.5 and depth less than 20 km. The travel-time observations are shown relative to a 0 km source and compared with the theoretical ak135 travel-time curves (solid lines). The legend lists the number of each phase plotted.

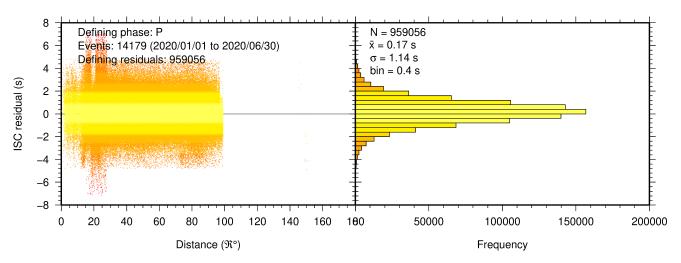


Figure 8.18: Distribution of travel-time residuals for the defining P phases used in the computation of ISC located events in the Bulletin.

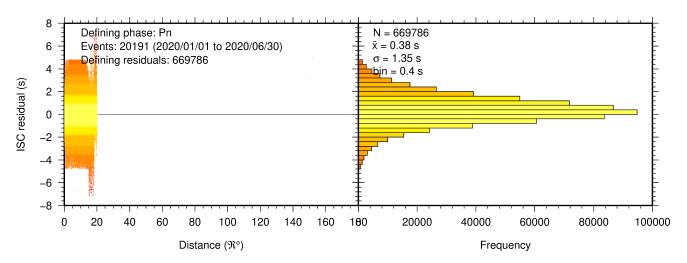


Figure 8.19: Distribution of travel-time residuals for the defining Pn phases used in the computation of ISC located events in the Bulletin.

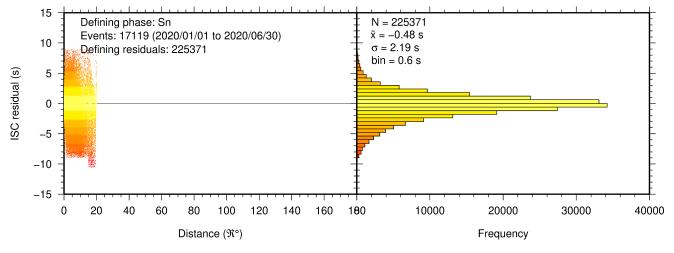


Figure 8.20: Distribution of travel-time residuals for the defining Sn phases used in the computation of ISC located events in the Bulletin.

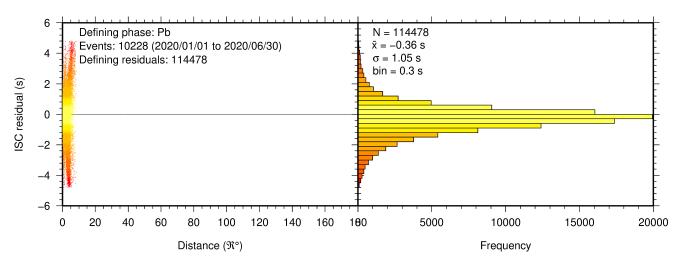


Figure 8.21: Distribution of travel-time residuals for the defining Pb phases used in the computation of ISC located events in the Bulletin.

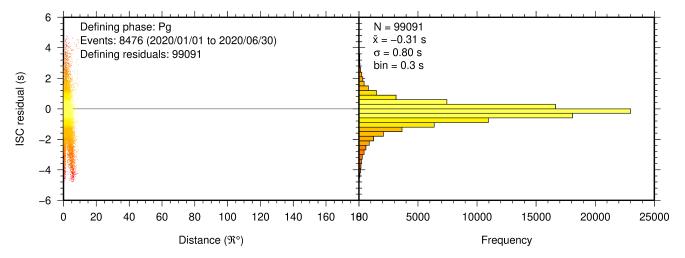


Figure 8.22: Distribution of travel-time residuals for the defining Pg phases used in the computation of ISC located events in the Bulletin.

8.3 Seismic Wave Amplitudes and Periods

The ISC Bulletin contains a variety of seismic wave amplitudes and periods measured by reporting agencies. For this Bulletin Summary, the total of collected amplitudes and periods is 3981227 (see Section 7.3). For the determination of the ISC magnitudes MS and mb, only a fraction of such data can be used. Indeed, the ISC network magnitudes are computed only for ISC located events. Here we recall the main features of the ISC procedure for MS and mb computation (see detailed description in Section 10.1.4). For each amplitude-period pair in a reading the ISC algorithm computes the magnitude (a reading can include several amplitude-period measurements) and the reading magnitude is assigned to the maximum A/T in the reading. If more than one reading magnitude is available for a station, the station magnitude is the median of the reading magnitudes. The network magnitude is computed then as the 20% alpha-trimmed median of the station magnitudes (at least three required). MS is computed for shallow earthquakes (depth ≤ 60 km) only and using amplitudes and periods on all three components (when available) if the period is within 10-60 s and the epicentral distance is between 20° and 160°. mb is computed also for deep earthquakes (depth down to 700 km) but only with amplitudes on the vertical

component measured at periods ≤ 3 s in the distance range 21°-100°.

Table 8.2 is a summary of the amplitude and period data that contributed to the computation of station and ISC MS and mb network magnitudes for this Bulletin Summary.

<i>Table 8.2:</i>	Summary of	the amplitude-period	data used by the ISC	Locator to compute MS and mb.
-------------------	------------	----------------------	----------------------	-------------------------------

	MS	mb
Number of amplitude-period data	150513	492330
Number of readings	132307	488325
Percentage of readings in the ISC located events	14.0	41.0
with qualifying data for magnitude computation		
Number of station magnitudes	127878	448695
Number of network magnitudes	3610	12501

A small percentage of the readings with qualifying data for MS and mb calculation have more than one amplitude-period pair. Notably, only 14% of the readings for the ISC located (shallow) events included qualifying data for MS computation, whereas for mb the percentage is much higher at 41%. This is due to the seismological practice of reporting agencies. Agencies contributing systematic reports of amplitude and period data are listed in Appendix Table 10.4. Obviously the ISC Bulletin would benefit if more agencies included surface wave amplitude-period data in their reports.

Figure 8.23 shows the distribution of the number of station magnitudes versus distance. For mb there is a significant increase in the distance range 70° - 90° , whereas for MS most of the contributing stations are below 100° . The increase in number of station magnitude between 70° - 90° for mb is partly due to the very dense distribution of seismic stations in North America and Europe with respect to earthquake occurring in various subduction zones around the Pacific Ocean.

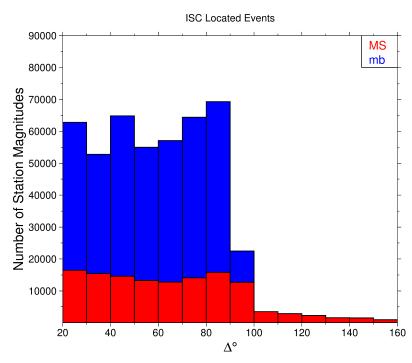


Figure 8.23: Distribution of the number of station magnitudes computed by the ISC Locator for mb (blue) and MS (red) versus distance.

Finally, Figure 8.24 shows the distribution of network MS and mb as well as the median number of stations for magnitude bins of 0.2. Clearly with increasing magnitude the number of events is smaller but with a general tendency of having more stations contributing to the network magnitude.

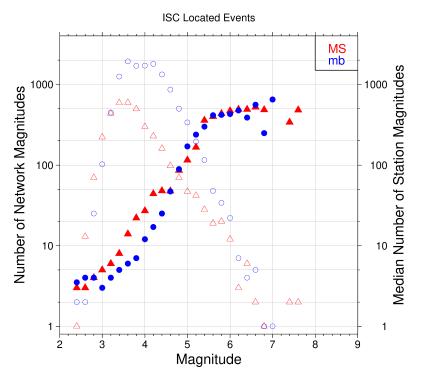
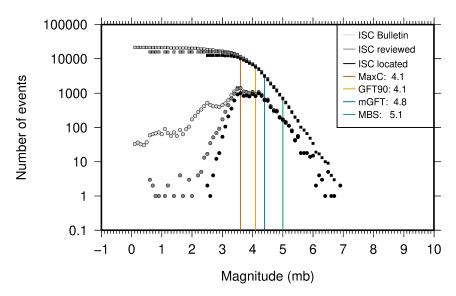
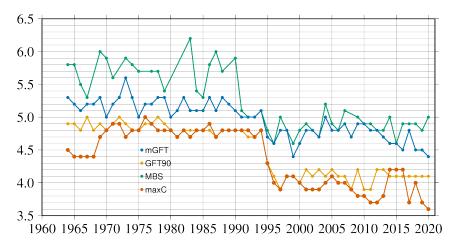


Figure 8.24: Number of network magnitudes (open symbols) and median number of stations magnitudes (filled symbols). Blue circles refer to mb and red triangles to MS. The width of the magnitude interval δM is 0.2, and each symbol includes data with magnitude in $M \pm \delta M/2$.


8.4 Completeness of the ISC Bulletin

We define the magnitude of completeness (hereafter M_C) as the lowest magnitude threshold above which all events are believed to be recorded. The Bulletin with events bigger than the defined M_C is assumed to be complete.


Until Issue 53, Volume II (July - December 2016) of the Summary of the ISC an estimation of M_C was computed only with the maximum curvature technique (Woessner and Wiemer, 2005). After the completion of the Rebuild Project and relocation of ISC hypocenters from data years 1964 to 2010 (Storchak et al., 2017), the estimate of M_C for the entire ISC Bulletin is re-computed using four catalogue based methodologies (Adamaki, 2017, and references therein): the previously used maximum curvature for comparison (maxC), Mc based on the b-value stability (MBS technique), the Goodness of Fit Test with a 90% level of fit (GFT90) and the modified Goodness of Fit Test (mGFT). Further details on each of these methodologies and their statistical behaviour can be found in Leptokaropoulos et al. (2018).

The magnitudes of completeness of the ISC Bulletin for this Summary period is shown in Figure 8.25. How M_C varies for the ISC Bulletin over the years is shown in Figure 8.26. The step change in 1996 corresponds with the inclusion of the Prototype IDC (EIDC) Bulletin, followed by the Reviewed Event Bulletin (REB) of the IDC.

Figure 8.25: Frequency and cumulative frequency magnitude distribution for all events in the ISC Bulletin, ISC reviewed events and events located by the ISC. The magnitude of completeness (M_C) is shown for the ISC Bulletin. Note: only events with values of mb are represented in the figure.

Figure 8.26: Variation of magnitude of completeness (M_C) for each year in the ISC Bulletin. Note: M_C is calculated only using those events with values of mb.

8.5 Magnitude Comparisons

The ISC Bulletin publishes network magnitudes reported by multiple agencies to the ISC. For events that have been located by the ISC, where enough amplitude data has been collected, the MS and mb magnitudes are calculated by the ISC (MS is computed only for depths ≤ 60 km). In this section, ISC magnitudes and some other reported magnitudes in the ISC Bulletin are compared.

The comparison between MS and mb computed by the ISC locator for events in this summary period is shown in Figure 8.27, where the large number of data pairs allows a colour coding of the data density. The scatter in the data reflects the fundamental differences between these magnitude scales.

Similar plots are shown in Figure 8.28 and 8.29, respectively, for comparisons of ISC mb and ISC MS with M_W from the GCMT catalogue. Since M_W is not often available below magnitude 5, these distributions are mostly for larger, global events. Not surprisingly, the scatter between mb and M_W is larger than the scatter between MS and M_W . Also, the saturation effect of mb is clearly visible for earthquakes with

 $M_W > 6.5$. In contrast, MS scales well with $M_W > 6$, whereas for smaller magnitudes MS appears to be systematically smaller than M_W .

In Figure 8.30 ISC values of mb are compared with all reported values of mb, values of mb reported by NEIC and values of mb reported by IDC. Similarly in Figure 8.31, ISC values of MS are compared with all reported values of MS, values of MS reported by NEIC and values of MS reported by IDC. There is a large scatter between the ISC magnitudes and the mb and MS reported by all other agencies.

The scatter decreases both for mb and MS when ISC magnitudes are compared just with NEIC and IDC magnitudes. This is not surprising as the latter two agencies provide most of the amplitudes and periods used by the ISC locator to compute MS and mb. However, ISC mb appears to be smaller than NEIC mb for mb < 4 and larger than IDC mb for mb > 4. Since NEIC does not include IDC amplitudes, it seems these features originate from observations at the high-gain, low-noise sites reported by the IDC. For the MS comparisons between ISC and NEIC a similar but smaller effect is observed for MS < 4.5, whereas a good scaling is generally observed for the MS comparisons between ISC and IDC.

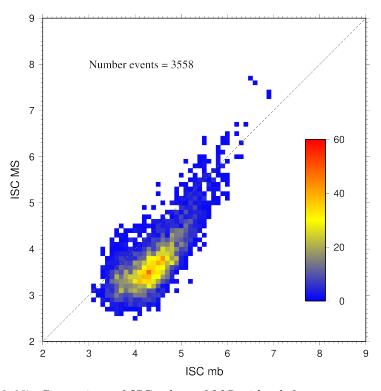


Figure 8.27: Comparison of ISC values of MS with mb for common event pairs.

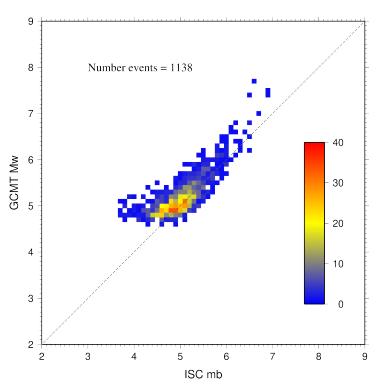


Figure 8.28: Comparison of ISC values of mb with GCMT M_W for common event pairs.

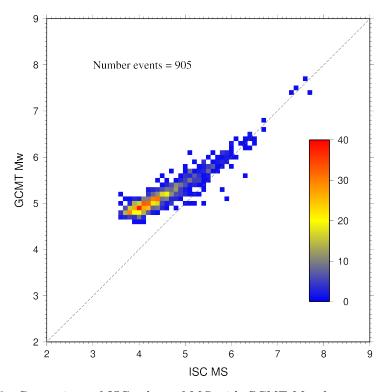


Figure 8.29: Comparison of ISC values of MS with GCMT M_W for common event pairs.

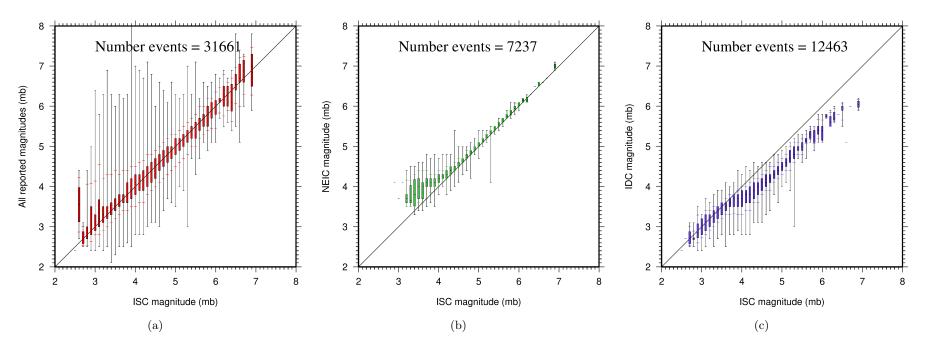


Figure 8.30: Comparison of ISC magnitude data (mb) with additional agency magnitudes (mb). The statistical summary is shown in box-and-whisker plots where the 10th and 90th percentiles are shown in addition to the max and min values. (a): All magnitudes reported; (b): NEIC magnitudes; (c): IDC magnitudes.

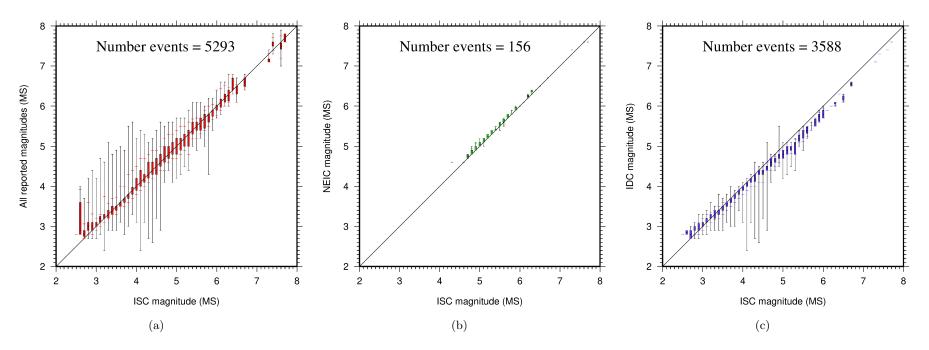


Figure 8.31: Comparison of ISC magnitude data (MS) with additional agency magnitudes (MS). The statistical summary is shown in the box-and-whisker plots where the 10th and 90th percentiles are shown in addition to the max and min values. (a): All magnitudes reported; (b): NEIC magnitudes; (c): IDC magnitudes.

9

The Leading Data Contributors

For the current six-month period, 150 agencies reported related bulletin data. Although we are grateful for every report, we nevertheless would like to acknowledge those agencies that made the most useful or distinct contributions to the contents of the ISC Bulletin. Here we note those agencies that:

- provided a comparatively large volume of parametric data (see Section 9.1),
- reported data that helped quite considerably to improve the quality of the ISC locations or magnitude determinations (see Section 9.2),
- helped the ISC by consistently reporting data in one of the standard recognised formats and in-line with the ISC data collection schedule (see Section 9.3).

We do not aim to discourage those numerous small networks who provide comparatively smaller yet still most essential volumes of regional data regularly, consistently and accurately. Without these reports the ISC Bulletin would not be as comprehensive and complete as it is today.

9.1 The Largest Data Contributors

We acknowledge the contribution of IDC, NEIC, GFZ, MOS, BJI, GCMT, MCSM, CLL and a few others (Figure 9.1) that reported the majority of moderate to large events recorded at teleseismic distances. The contributions of NEIC, IDC, MEX, JMA and several others are also acknowledged with respect to smaller seismic events. The contributions of JMA, AFAD, ISK, RSNC, TAP, WEL and a number of others are also acknowledged with respect to small seismic events. Note that the NEIC bulletin accumulates a contribution of all regional networks in the USA. Several agencies monitoring highly seismic regions routinely report large volumes of small to moderate magnitude events, such as those in Japan, Chinese Taipei, Turkey, Italy, Greece, New Zealand, Mexico and Columbia. Contributions of small magnitude events by agencies in regions of low seismicity, such as Finland are also gratefully received.

We also would like to acknowledge contributions of those agencies that report a large portion of arrival time and amplitude data (Figure 9.2). For small magnitude events, these are local agencies in charge of monitoring local and regional seismicity. For moderate to large events, contributions of NEIC, USArray, GFZ, MOS, IDC are especially acknowledged. Notably, four agencies (NEIC, GFZ, MOS and IDC) together reported over 70% of all amplitude measurements made for teleseismically recorded events. We hope that other agencies would also be able to update their monitoring routines in the future to include the amplitude reports for teleseismic events compliant with the IASPEI standards.

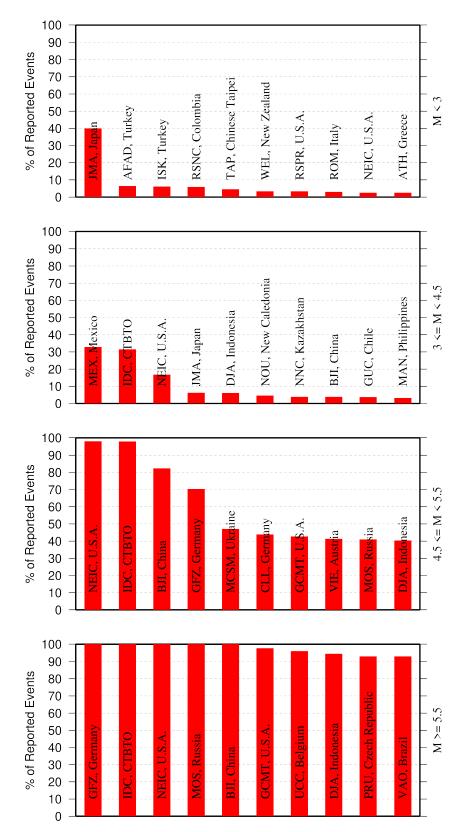


Figure 9.1: Frequency of events in the ISC Bulletin for which an agency reported at least one item of data: a moment tensor, a hypocentre, a station arrival time or an amplitude. The top ten agencies are shown for four magnitude intervals.

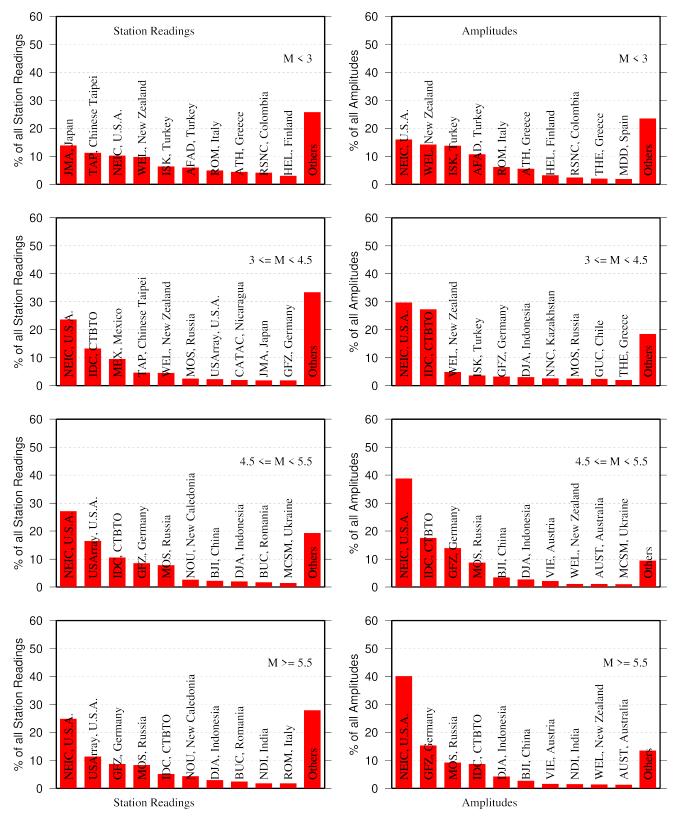


Figure 9.2: Contributions of station arrival time readings (left) and amplitudes (right) of agencies to the ISC Bulletin. Top ten agencies are shown for four magnitude intervals.

9.2 Contributors Reporting the Most Valuable Parameters

One of the main ISC duties is to re-calculate hypocentre estimates for those seismic events where a collective wealth of all station reports received from all agencies is likely to improve either the event location or depth compared to the hypocentre solution from each single agency. For areas with a sparse local seismic network or an unfavourable station configuration, readings made by other networks at teleseismic distances are very important. All events near mid-oceanic ridges as well as those in the majority of subduction zones around the world fall into this category. Hence we greatly appreciate the effort made by many agencies that report data for remote earthquakes (Figure 9.3). For some agencies, such as the IDC and the NEIC, it is part of their mission. For instance, the IDC reports almost every seismic event that is large enough to be recorded at teleseismic distance (20 degrees and beyond). This is largely because the International Monitoring System of primary arrays and broadband instruments is distributed at quiet sites around the world in order to be able to detect possible violations of the Comprehensive Nuclear-Test-Ban Treaty. The NEIC reported over 40% of those events as their mission requires them to report events above magnitude 4.5 outside the United States of America. For other agencies reporting distant events it is an extra effort that they undertake to notify their governments and relief agencies as well as to help the ISC and academic research in general. Hence these agencies usually report on the larger magnitude events. BJI, GFZ, MOS, NAO, CLL, VIE, UCC, AWI each reported individual station arrivals for several percent of all relevant events. We encourage other agencies to report distant events to us.

In addition to the first arriving phase we encourage reporters to contribute observations of secondary seismic phases that help constrain the event location and depth: S, Sn, Sg and pP, sP, PcP (Figure 9.4). We expect though that these observations are actually made from waveforms, rather than just predicted by standard velocity models and modern software programs. It is especially important that these arrivals are manually reviewed by an operator (as we know takes place at the IDC and NEIC), as opposed to some lesser attempts to provide automatic phase readings that are later rejected by the ISC due to a generally poor quality of unreviewed picking.

Another important long-term task that the ISC performs is to compute the most definitive values of

Figure 9.3: Top ten agencies that reported teleseismic phase arrivals for a large portion of ISC events.

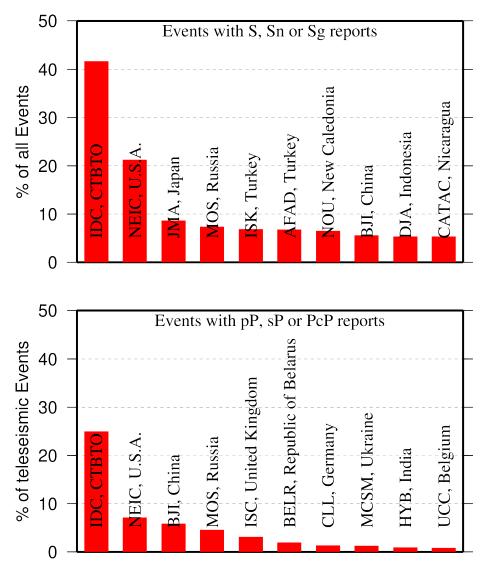


Figure 9.4: Top ten agencies that reported secondary phases important for an accurate epicentre location (top) and focal depth determination (bottom).

MS and mb network magnitudes that are considered reliable due to removal of outliers and consequent averaging (using alpha-trimmed median) across the largest network of stations, generally not feasible for a single agency. Despite concern over the bias at the lower end of mb introduced by the body wave amplitude data from the IDC, other agencies are also known to bias the results. This topic is further discussed in Section 8.5.

Notably, the IDC reports almost 100% of all events for which MS and mb are estimated. This is due to the standard routine that requires determination of body and surface wave magnitudes useful for discrimination purposes. NEIC, BJI, NAO, MOS, BELR, CLL and a few other agencies (Figure 9.5) are also responsible for the majority of the amplitude and period reports that contribute towards the ISC magnitudes.

The ISC only recently started to determine source mechanisms in addition to those reported by other agencies. For moment tensor magnitudes we rely on reports from other agencies (Figure 9.6).

Among other event parameters the ISC Bulletin also contains information on event type. We cannot

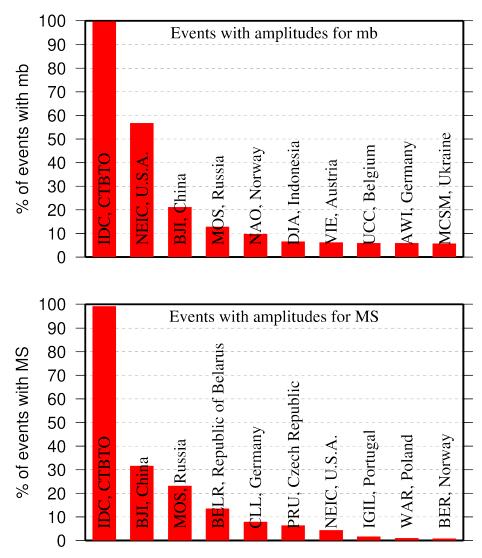


Figure 9.5: Agencies that report defining body (top) and surface (bottom) wave amplitudes and periods for the largest fraction of those ISC Bulletin events with MS/mb determinations.

independently verify the type of each event in the Bulletin and thus rely on other agencies to report the event type to us. Practices of reporting non-tectonic events vary greatly from country to country. Many agencies do not include anthropogenic events in their reports. Suppression of such events from reports to the ISC may lead to a situation where a neighbouring agency reports the anthropogenic event as an earthquake for which expected data are missing. This in turn is detrimental to ISC Bulletin users studying natural seismic hazard. Hence we encourage all agencies to join the agencies listed on Figure 9.7 and several others in reporting both natural and anthropogenic events to the ISC.

The ISC Bulletin also contains felt and damaging information when local agencies have reported it to us. Agencies listed on Figure 9.8 provide such information for the majority of all felt or damaging events in the ISC Bulletin.

Figure 9.6: Top ten agencies that most frequently report determinations of seismic moment tensor (top) and moment magnitude (middle/bottom for M greater/smaller than 4.5).

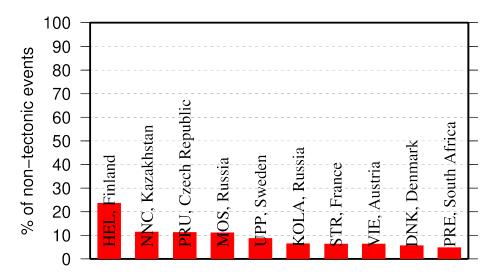


Figure 9.7: Top ten agencies that most frequently report non-tectonic seismic events to the ISC.

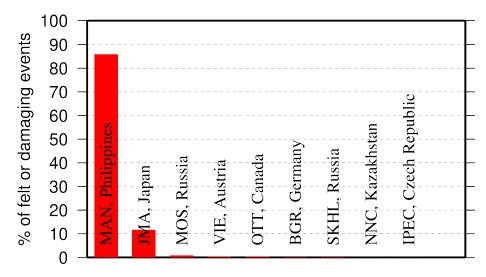


Figure 9.8: Top ten agencies that most frequently report macroseismic information to the ISC.

9.3 The Most Consistent and Punctual Contributors

During this six-month period, 27 agencies reported their bulletin data in one of the standard seismic formats (ISF, IMS, GSE, Nordic or QuakeML) and within the current 12-month deadline. Here we must reiterate that the ISC accepts reviewed bulletin data after a final analysis as soon as they are ready. These data, even if they arrive before the deadline, are immediately parsed into the ISC database, grouped with other data and become available to the ISC users on-line as part of the preliminary ISC Bulletin. There is no reason to wait until the deadline to send the data to the ISC. Table 9.1 lists all agencies that have been helpful to the ISC in this respect during the six-month period.

Table 9.1: Agencies that contributed reviewed bulletin data to the ISC in one of the standard international formats before the submission deadline.

Agency Code	Country	Average Delay from real time (days)
AUST	Australia	15
ZUR	Switzerland	17
WEL	New Zealand	18
IDC	Austria	28
ATH	Greece	28
IGIL	Portugal	31
PPT	French Polynesia	34
LDG	France	35
ECX	Mexico	35
BUC	Romania	37
NAO	Norway	44
KNET	Kyrgyzstan	49
BGS	United Kingdom	61
MDD	Spain	69
TIR	Albania	82
NEIC	U.S.A.	100
ISK	Turkey	109
SVSA	Portugal	126
INMG	Portugal	134
DSN	United Arab Emirates	167
BJI	China	167
KEA	Democratic People's Republic of Korea	175
VIE	Austria	250
NDI	India	288
BER	Norway	295
UCC	Belgium	321
IPEC	Czech Republic	328

10

Appendix

10.1 ISC Operational Procedures

10.1.1 Introduction

The relational database at the ISC is the primary source for the ISC Bulletin. This database is also the source for the ISC web-based search, the ISC CD-ROMs and this printed Summary. The ISC database is also mirrored at several institutions such as the Data Management Center of the Incorporated Research Institutions for Seismology (IRIS DMC), Earthquake Research Institute (ERI) of the University of Tokyo and a few others.

The database holds information about ISC events, both natural and anthropogenic. Information on each event may include hypocentre estimates, moment tensors, event type, felt and damaging reports and associated station observations reported by different agencies and grouped together per physical event.

The majority of the ISC events ($\sim 80\%$) are small and are not reviewed by the ISC analysts. Those that are reviewed ($\sim 20\%$, usually magnitude greater than 3.5) may or may not include an ISC hypocentre solution and magnitude estimates. The decision depends on whether the wealth of combined information from several agencies as compared to the data of each single agency alone warrants the ISC location. The events are called ISC events regardless of whether they have been reviewed or located by the ISC or not.

All events located by the ISC are reviewed by the ISC analysts but not the other way round. Analyst review involves an examination of the integrity of all reported parametric information. It does not involve review of waveforms. Even if waveforms from all of the \sim 6,000 stations included in a typical recent month of the ISC Bulletin were freely available, it would be an unmanageable task to inspect them all.

We shall now describe briefly current processes and procedures involved in producing the Bulletin of the International Seismological Centre. These have been developed from former practices described in the Introduction to earlier issues of the ISC Bulletin to account for modern methods and technologies of data collection and analysis.

10.1.2 Data Collection

Parametric data, mainly comprising seismic event hypocentre solutions, phase arrival observations and associated magnitude data, are now mostly emailed to the ISC (seismo@isc.ac.uk) by agencies around the world. Other macroseismic and source information associated with seismic events may also be incorporated in accordance with modern standards. The process of data collection at the ISC involves

the automatic parsing of these data into the ISC relational database. The ISC now has over 200 individual parsers to account for legacy and current bulletin data formats used by data reporters.

Figure 10.1 shows the 313 agencies that have reported bulletin data to the ISC, directly or via regional data centres, during the entire period of the ISC existence: these agencies are also listed in Table 10.2 of the Appendix. In Figure 10.1, corresponding countries are shown shaded in red. Please note that the continent of Antarctica appears white on the map despite a steady stream of bulletin data from Antarctic stations: the agencies that run these stations are based elsewhere.

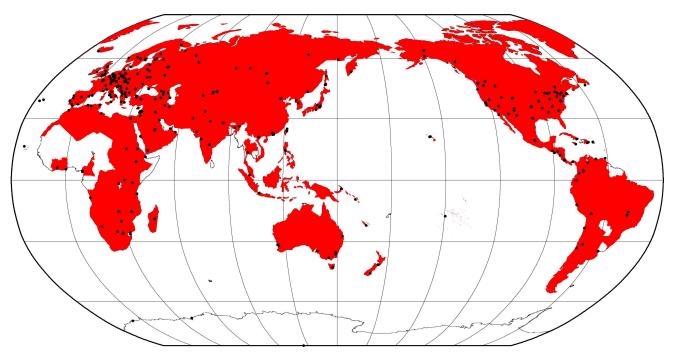


Figure 10.1: Map of 313 agencies and corresponding countries that have reported seismic bulletin data to the ISC at least once during the entire period of the ISC operations, either directly or via regional data centres. Corresponding countries are shaded in red.

10.1.3 ISC Automatic Procedures

Grouping

Grouping is the automatic process by which the many hypocentre solutions sent by the agencies reporting to the ISC for the same physical event are merged together into a single ISC event. This process possibly begins with an alert message and ends before a final review by ISC analysts. The process periodically runs through a set time interval of the input data stream, typically one day, looking for hypocentres in newly received data that are not yet grouped into an ISC event. Thus it considers only data more recent than the last data month reviewed by the ISC analysts. Immediately after grouping the seismic arrival associator is run on the same time interval, dealing with new phase arrival data not associated with any hypocentre.

The first stage of grouping gets a score where possible for each hypocentre to determine whether the reported hypocentre will be considered to be the primary estimate, or prime, for an ISC event. This score is based on the station arrival times reported in association with the hypocentre in four epicentral

distance zones that characterise the networks of stations reporting:

- 1. Whole network
- 2. Local, 0 150 km
- 3. Near-regional, 3° 10°
- 4. Teleseismic, 28° 180°

For each distance zone, the azimuthal gap, the secondary azimuthal gap (the largest azimuthal gap filled by a single station), the minimum and maximum epicentral distance and number of stations are all used to calculate the value of dU, the normalised absolute deviation from best fitting uniformly distributed stations (Bondár and McLaughlin, 2009a). Clearly, this procedure can only use:

- 1. Bulletin data with hypocentres and sufficient associated seismic arrivals
- 2. Data for stations that are in the International Registry (IR)
- 3. Station data that are actually reported to ISC: CENC (China), for example, reports at most 24 stations, whilst many more may have been used to determine the hypocentre.

The hypocentres are then each considered in turn for grouping using one of two methods, the first by searching for a similar hypocentre, and the second by searching for the best fit of the reported phase arrival data that are associated with the candidate hypocentre. The method chosen for a reporter is based on feedback gained from ISC analysts.

For finding similar hypocentres, three sets of limits for origin-time difference and epicentral separation are used according to the type of bulletin data, be it alert, provisional or final: these limits are, respectively:

- ± 2 minutes and 10°
- ± 2 minutes and 4°
- ± 1 minutes and 2°

If there is no overlap with the hypocentre of an existing ISC event, a new event is formed. For each candidate hypocentre, a proximity score is otherwise calculated based on differences in time, t, and distance, s, between the candidate hypocentre and a hypocentre in an event with which it could potentially be grouped.

Proximity score =
$$2 - (dt/dt_{max}) - (ds/ds_{max})$$

where ds_{max} is the maximum distance between hypocentres and dt_{max} the maximum difference in origin time.

As long as there is no duplication of hypocentre (with the same author, origin time and location within tight limits) the candidate hypocentre together with the associated phase data is grouped with the prime

hypocentre of the event and the initial dU score is used to reassess the prime hypocentre designation. Apparent duplicated hypocentre estimations, including preliminary solutions relayed by other agencies, need to be assessed to determine whether they should really be split between different events. Should there be two or more equally valid events, these can be assessed in turn and may eventually be merged together.

Grouping by fit of the associated phase arrival data is simpler. The residuals of the arrival data are calculated using ak135 travel times for all suitable prime hypocentres within the widest proximity limits given above for similar hypocentres. The hypocentre and associated phase arrival data is then grouped with the event with the best fitting prime hypocentre, which may similarly be re-designated according to the dU scores. Associations of phase arrival data are updated to be with the prime hypocentre estimate of each ISC event.

It follows that a hypocentre and associated phase arrival data submitted by a reporter will have the reported hypocentre set as the prime hypocentre in the ISC event if no other submitted hypocentre estimate is a closer match. It follows also that a hypocentre submitted without phase data can only be grouped with a similar hypocentre. Generally, early arriving data may be superseded by later arriving data: the data will still be in the ISC database but be deprecated, that is, marked as being no longer useful for further processes.

Association

Association is the automatic procedure, run routinely after grouping, that links reported phase arrivals at IR stations with the prime hypocentres of ISC events. As grouping took care of those phases associated with reported hypocentres, by associating the phases to the respective prime hypocentres of the ISC events without further checks, this procedure is only required for phase arrival observations that were sent without any association of event made for them by the reporter. Currently only 5% of arrival data is sent unassociated compared with 25% ten years ago.

If a phase arrival is found to be very similar to another already reported, it is placed in the same event, otherwise the procedure below is followed.

For associating a phase arrival, suitable events are sought with prime hypocentre origin-times in the window 40 minutes before and 100 s after the arrival time. For each phase arrival and prime hypocentre an ak135 travel-time residual is calculated for either the reported arrival phase name or an alternative from a default list if appropriate. Possible timing errors that are multiples of 60 s (a minute) are considered if the phase arrival is at a station not known to be digitally recording. A reporting likelihood is then determined based on the reported event magnitude: a magnitude default of 3.0 is used if no magnitude is given.

A final score is calculated from the residuals, from the likelihood of the phase observations for the magnitude of the event and from the S-P misfit. A phase arrival along with all other phase arrivals in that reading for the station is then associated with the prime hypocentre with the best score. If no suitable match is found, the reading remains unassociated but may be used at some later stage.

Thresholding

Thresholding is the process determining which events are to be reviewed by the ISC analysts. In former times, before email transmission of data was convenient, all events were reviewed, with magnitudes nearly always 3.5 or above. Nowadays, data contributors are encouraged to send all their data, which are stored in the ISC database. The overwhelming amount of data, including that for many more smaller events and from many more seismograph stations, led to the advent of ISC Comprehensive Bulletin, for all events, and the ISC Reviewed Bulletin, for selected events reviewed by ISC analysts. Thresholding has been under constant review since the start of the 1999 data year.

Several criteria are considered to decide which events merit review. Once a decision is made, whether or not an event is to be reviewed, further criteria are not considered.

In this section, M is the maximum magnitude reported by any agency for the event. The sequence of tests in the automatic decision process for reviewing events is currently:

- All events reported by the International Data Centre (IDC) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) are reviewed.
- If M is greater than or equal to 3.5, the event is reviewed.
- If M is less than 2.5, the event is not reviewed.
- If M is unknown, the number of data sources of hypocentres and phase arrivals is used. Care is taken here to avoid counting indirect reports arriving via agencies such as NEIC, CSEM and CASC, which compile regional and global data:
 - If the number of hypocentre authors is greater than two and the maximum epicentral distance of arrival data is greater than 10°, the event is reviewed.
 - If the number of arrival authors is greater than two and the maximum epicentral distance of arrival data is greater than 10°, the event is reviewed.
 - Otherwise the event is not reviewed.
- If M is between 2.5 and 3.5:
 - If the number of hypocentre and seismic arrival authors is less than two, the event is not reviewed.
 - If any bulletin contributing to the event has at least ten stations within 3° and the secondary azimuthal gap (the largest azimuthal gap filled by a single station) is less than 135°, the event is not reviewed.

Location by the ISC

The automatic processes group and associate incoming data into ISC events as indicated above. These data are available to users before review by the ISC analysts but there will be no ISC hypocentre solutions for any of the events. The candidate events due for review by the ISC analysts are determined by the

thresholding process, which is why many smaller events remain without an ISC hypocentre solution even after the analyst review.

Several further checks of the data are made in preparation for the analyst review, and initial trial estimates for ISC hypocentres are then generated using the accumulated data. If sufficiently robust, the ISC hypocentre estimation will be retained and be made the prime solution for the event, but this, of course, will itself be subject to the analyst review.

It is important to note that not all reviewed events will have an ISC hypocentre. At least one of the criteria listed below must be met for an initial ISC location of a reviewed event to be made:

- All events with an IDC hypocentre, unless IDC is the only hypocentre author and there are less than six associated phases.
- Two or more reporters of data
- Phase data at epicentral distance $\geq 20^{\circ}$

The ISC locator also needs an intial seed location; in all events except those with eight or more reporters of data where the existing prime is used, this is calculated using a Neighbourhood Algorithm (NA) (Sambridge, 1999; Sambridge and Kennett, 2001). More information about the ISC location algorithm and initial seed is given in the next section.

10.1.4 ISC Location Algorithm

The new ISC location algorithm is described in detail in *Bondár and Storchak* (2011) (doi: 10.1111/j.1365-246X.2011.05107.x, Manual www.isc.ac.uk/iscbulletin/iscloc/); here we give a short summary of the major features. Ever since the ISC came into existence in 1964, it has been committed to providing a homogeneous bulletin that benefits scientific research. Hence the location algorithm used by the ISC, except for some minor modifications, has remained largely unchanged for the past 40 years (*Adams et al.*, 1982; *Bolt*, 1960). While the ISC location procedures have served the scientific community well in the past, they can certainly be improved.

Linearised location algorithms are very sensitive to the initial starting point for the location. The old procedures made the assumption that a good initial hypocentre is available among the reported hypocentres. However, there is no guarantee that any of the reported hypocentres are close to the global minimum in the search space. Furthermore, attempting to find a free-depth solution was futile when the data had no resolving power for depth (e.g. when the first arrival is not within the inflection point of the P travel-time curve). When there was no depth resolution, the algorithm would simply pick a point on the origin time – depth trade-off curve. The old ISC locator assumed that the observational errors are independent. The recent years have seen a phenomenal growth both in the number of reported events and phases, owing to the ever-increasing number of stations worldwide. Similar ray paths will produce correlated travel-time prediction errors due to unmodelled heterogeneities in the Earth, resulting in underestimated location uncertainties and for unfavourable network geometries, location bias. Hence, accounting for correlated travel-time prediction errors becomes imperative if we want to improve (or

simply maintain) location accuracy as station networks become progressively denser. Finally, publishing network magnitudes that may have been derived from a single station measurement was rather prone to producing erroneous event magnitude estimates.

To meet the challenge imposed by the ever-increasing data volume from heavily unbalanced networks we introduced a new ISC location algorithm to ensure the efficient handling of data and to further improve the location accuracy of events reviewed by the ISC. The new ISC location algorithm

- Uses all ak135 (Kennett et al., 1995) predicted phases (including depth phases) in the location;
- Obtains the initial hypocentre guess via the Neighbourhood Algorithm (NA) (Sambridge, 1999; Sambridge and Kennett, 2001);
- Performs iterative linearised inversion using an *a priori* estimate of the full data covariance matrix to account for correlated model errors (*Bondár and McLaughlin*, 2009b);
- Attempts a free-depth solution if and only if there is depth resolution, otherwise it fixes the depth to a region-dependent default depth;
- Scales uncertainties to 90% confidence level and calculates location quality metrics for various distance ranges;
- Obtains a depth-phase depth estimate based on reported surface reflections via depth-phase stacking (Murphy and Barker, 2006);
- Provides robust network magnitude estimates with uncertainties.

Seismic Phases

One of the major advantages of using the ak135 travel-time predictions (Kennett et al., 1995) is that they do not suffer from the baseline difference between P, S and PKP phases compared with the Jeffreys-Bullen tables (Jeffreys and Bullen, 1940). Furthermore, ak135 offers an abundance of phases from the IASPEI Standard Seismic List (Storchak et al., 2003; 2011) that can be used in the location, most notably the PKP branches and depth-sensitive phases. Elevation and ellipticity corrections (Dziewonski and Gilbert, 1976; Engdahl et al., 1998; Kennett et al., 1996), using the WG84 ellipsoid parameters, are added to the ak135 predictions. For depth phases, bounce point (elevation correction at the surface reflection point) and water depth (for pwP) corrections are calculated using the algorithm of Engdahl et al. (1998). We use the ETOPO1 global relief model (Amante and Eakins, 2009) to obtain the elevation or the water depth at the bounce point.

Phase picking errors are described by a priori measurement error estimates derived from the inspection of the distribution of ground truth residuals (residuals calculated with respect to the ground truth location) from the IASPEI Reference Event List (Bondár and McLaughlin, 2009a). For phases that do not have a sufficient number of observations in the ground truth database we establish a priori measurement errors so that the consistency of the relative weighting schema is maintained. First-arriving P-type phases (P, Pn, Pb, Pg) are picked more accurately than later phases, so their measurement error estimates are the smallest, 0.8 s. The measurement error for first-arriving S-phases (S, Sn, Sb, Sg) is set to 1.5 s.

Phases traversing through or reflecting from the inner/outer core of the Earth have somewhat larger (1.3) s for PKP, PKS, PKKP, PKKS and P'P' branches as well as PKiKP, PcP and PcS, and 1.8 s for SKP, SKS, SKKP, SKKS and S'S' branches as well as SKiKP, ScP and ScS) measurement error estimates to account for possible identification errors among the various branches. Free-surface reflections and conversions (PnPn, PbPb, PgPg, PS, PnS, PgS and SnSn, SbSb, SgSg, SP, SPn, SPg) are observed less frequently and with larger uncertainty, and therefore suffer from large, 2.5 s, measurement errors. Similarly, a measurement error of 2.8 s is assigned to the longer period and typically emergent diffracted phases (Pdif, Sdif, PKPdif). The a priori measurement error for the commonly observed depth phases (pP, sP, pS, sS and pwP) is set to 1.3 s, while the remaining depth phases (pPKP, sPKP, pSKS, sSKS branches and pPb, sPb, sSb, pPn, sPn, sSn) have the measurement error estimate set to 1.8 s. We set the measurement error estimate to 2.5 s for the less reliable depth phases (pPg, sPg, sSg, pPdif, pSdif, sPdif and sSdif). Note that we also allow for distance-dependent measurement errors. For instance, to account for possible phase identification errors at far-regional distances the a priori measurement error for Pn and P is increased from 0.8 s to 1.2 s and for Sn and S from 1.5 s to 1.8 s between 15° and 28°. The measurement errors between 40° and 180° are set to 1.3 s and 1.8 s for the prominent PP and SS arrivals respectively, but they are increased to 1.8 s and 2.5 s between 25° and 40°.

The relative weighting scheme (Figure 10.2) described above ensures that arrivals picked less reliably or prone to phase identification errors are down-weighted in the location algorithm. Since the ISC works with reported parametric data with wildly varying quality, we opted for a rather conservative set of a priori measurement error estimates.

Correlated Travel-Time Prediction Error Structure

Most location algorithms, either linearised or non-linear, assume that all observational errors are independent. This assumption is violated when the separation between stations is less than the scale length of local velocity heterogeneities. When correlated travel-time prediction errors are present, the data covariance matrix is no longer diagonal, and the redundancy in the observations reduces the effective number of degrees of freedom. Thus, ignoring the correlated error structure inevitably results in underestimated location uncertainty estimates. For events located by an unbalanced seismic network this may also lead to a biased location estimate. Chang et al. (1983) demonstrated that accounting for correlated error structure in a linearised location algorithm is relatively straightforward once an estimate of the non-diagonal data covariance matrix is available. To determine the data covariance matrix we follow the approach described by Bondár and McLaughlin (2009b). They assume that the similarity between ray paths is well approximated by the station separation. This simplifying assumption allows for the estimation of covariances between station pairs from a generic P variogram model derived from ground truth residuals. Because the overwhelming number of phases in the ISC Bulletin is teleseismic P, we expect that the generic variogram model will perform reasonably well anywhere on the globe.

Since in this representation the covariances depend only on station separations, the covariance matrix (and its inverse) needs to be calculated only once. We assume that different phases owing to the different ray paths they travel along as well as station pairs with a separation larger than 1000 km are uncorrelated. Hence, the data covariance matrix is a sparse, block-diagonal matrix. Furthermore, if the stations in each phase block are ordered by their nearest neighbour distance, the phase blocks themselves become

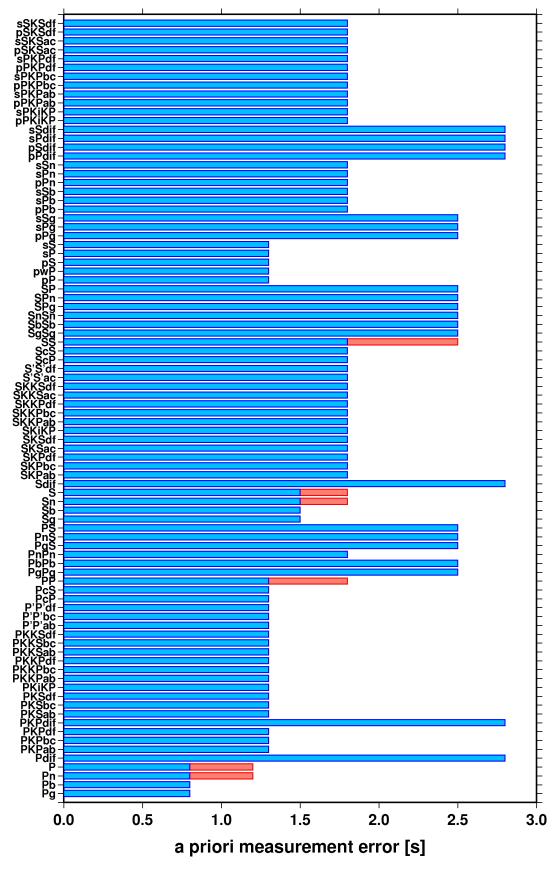


Figure 10.2: A priori measurement error estimates for phases used in the location algorithm. The red coloured errors are distance-dependent, which are applied for distances when phase identification errors may occur (see text).

block-diagonal. To reduce the computational time of inverting large matrices we exploit the inherent block-diagonal structure by inverting the covariance matrix block-by-block. The *a priori* measurement error variances are added to the diagonal of the data covariance matrix.

Depth Resolution

In principle, depth can be resolved if there is a mixture of upgoing and downgoing waves emanating from the source, that is, if there are stations covering the distance range where the vertical partial derivative of the travel-time of the first-arriving phase changes sign (local networks), or if there are phases with vertical slowness of opposite sign (depth phases). Core reflections, such as PcP, and to a lesser extent, secondary phases (S in particular) could also help in resolving the depth.

We developed a number of criteria to test whether the reported data for an event have sufficient depth resolution:

- local network: one or more stations within 0.2° with time-defining phases
- depth phases: five or more time-defining depth phases reported by at least two agencies (to reduce a chance of misinterpretation by a single inexperienced analyst)
- core reflections: five or more time-defining core reflections (PcP, ScS) reported by at least two agencies
- local/near regional S: five or more time-defining S and P pairs within 3°

We attempt a free-depth solution if any of the above criteria are satisfied; otherwise we fix the depth to a default depth dependent on the epicentre location. This will preferably be the grid depth based on the ISC default depth grid (Figure 10.3). Where no grid depth is available the default depth is set to either 10 km or 35 km based on the GRN (See Figure 10.4. A list of GRN's can be found in Section 10.2.2). The default depth grid was derived from the EHB (*Engdahl et al.*, 1998) free-depth solutions, including the fixed-depth EHB earthquakes that were flagged as having reliable depth estimate (personal communication with Bob Engdahl), as well as from free-depth solutions obtained by the new locator when locating the entire ISC Bulletin data-set. As Figure 10.3 indicates, the default depth grid provides a reasonable depth estimate where seismicity is well established. Note that the depths of known anthropogenic events and landslides are fixed to the surface.

Depth-Phase Stack

While we use depth phases directly in the location, the depth-phase stacking method (Murphy and Barker, 2006) provides an independent means to obtain robust depth estimates. Because the depth obtained from the depth-phase stacking method implicitly depends on the epicentre itself, we perform the depth-phase stack only twice: first, with respect to the initial location in order to obtain a reasonable starting point for the depth in the grid search described in the following section; second, with respect to the final location to obtain the final estimate for the depth-phase constrained depth.

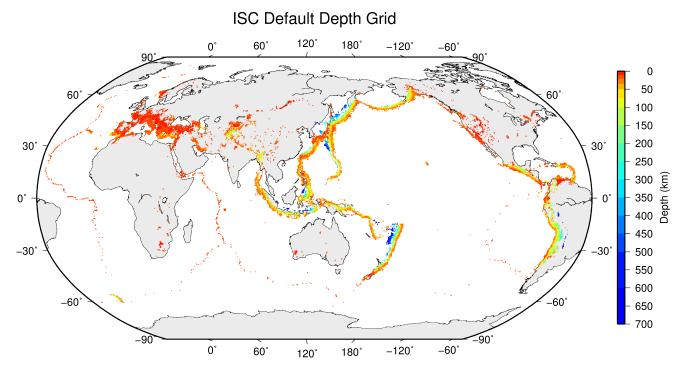


Figure 10.3: Default depths on a 0.5×0.5 degree grid derived from EHB free-depth solutions and EHB events flagged as reliable depth, as well as free-depth solutions from the entire ISC Bulletin located with the new locator.

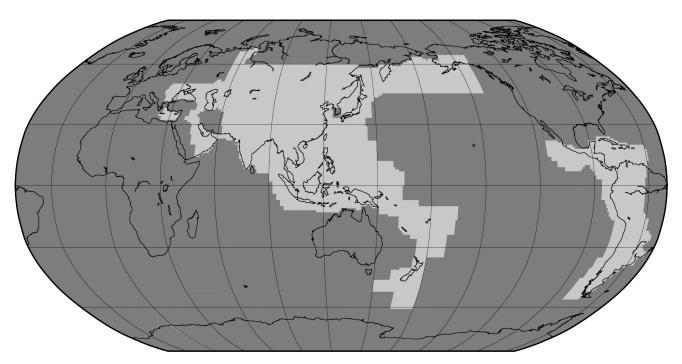


Figure 10.4: Default depths by Flinn-Engdahl geographic regions. Dark grey regions are set to $10~\rm{km}$ and light grey to $35~\rm{km}$

Initial Hypocentre

For poorly recorded events the reported hypocentres may exhibit a large scatter and they could suffer from large location errors, especially if they are only recorded teleseismically. In order to obtain a good initial hypocentre guess for the linearised location algorithm we employ the Neighbourhood Algorithm (NA) (Sambridge, 1999; Sambridge and Kennett, 2001). NA is a nonlinear grid search method capable of exploring a large search space and rapidly closing in on the global optimum. Kennett (2006) discusses in detail the NA algorithm and its use for locating earthquakes.

We perform a search around the median of reported hypocentre parameters with a generously defined search region – within a 2° radius circle around the median epicentre, 10 s around the median origin time and 150 km around the median reported depth. These default search parameters were obtained by trial-and-error runs to achieve a compromise between execution time and allowance for gross errors in the median reported hypocentre parameters. Note that if our test for depth resolution fails, we fix the depth to the region-dependent default depth. The initial hypocentre estimate will be the one with the smallest L1-norm misfit among the NA trial hypocentres. Once close to the global optimum, we proceed with the linearised location algorithm to obtain the final solution and corresponding formal uncertainties.

Iterative Linearised Location Algorithm

We adopt the location algorithm described in detail in *Bondár and McLaughlin* (2009b). Recall that in the presence of correlated travel-time prediction errors the data covariance matrix is no longer diagonal. Using the singular value decomposition of the data covariance matrix we construct a projection matrix that orthogonalises the data set and projects redundant observations into the null space. In other words, we solve the inversion problem in the eigen coordinate system in which the transformed observations are independent.

The model covariance matrix yields the four-dimensional error ellipsoid whose projections provide the two-dimensional error ellipse and one-dimensional errors for depth and origin time. These uncertainties are scaled to the 90% confidence level. Note that since we projected the system of equations into the eigen coordinate system, the number of independent observations is less than the total number of observations. Hence, the estimated location error ellipses necessarily become larger, providing a more realistic representation of the location uncertainties. The major advantage of this approach is that the projection matrix is calculated only once for each event location.

Validation Tests

To demonstrate improvements due to the new location procedures, we located some 7,200 GT0-5 events in the IASPEI Reference Event List (*Bondár and McLaughlin*, 2009a) both with the old ISC locator (which constitutes the baseline) and with the new location algorithm. We also located the entire (1960-2010) ISC Bulletin, including four years of the International Seismological Summary (ISS, the predecessor of the ISC) catalogue (*Villaseñor and Engdahl*, 2005; 2007).

The location of GT events demonstrated that the new ISC location algorithm provides small but consis-

tent location improvements, considerable improvements in depth determination and significantly more accurate formal uncertainty estimates. Even using a 1-D model and a variogram model that fits teleseismic observations we could achieve realistic uncertainty estimates, as the 90% confidence error ellipses cover the true locations 80-85% of the time. The default depth grid provides reasonable depth estimates where there is seismicity. We have shown that the location and depth accuracy obtained by the new algorithm matches or surpasses the EHB accuracy.

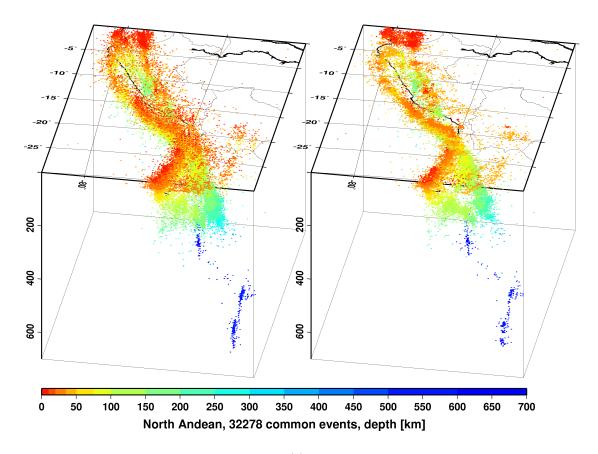
We noted above that the location improvements for the ground truth events are consistent, but minor. This is not surprising as most of the events in the IASPEI Reference Event List are very well-recorded with a small azimuthal gap and dominated by P-type phases. In these circumstances we could expect significant location improvements only for heavily unbalanced networks where large numbers of correlated ray paths conspire to introduce location bias. On the other hand, the ISC Bulletin represents a plethora of station configurations ranging from reasonable to the most unfavourable network geometries. Hence, we could expect more dramatic location improvements when locating the entire ISC Bulletin. Although in this case we cannot measure the improvement in location accuracy due to the lack of ground truth information, we show that with the new locator we obtain significantly better clustering of event locations (Figure 10.5), thus providing an improved view of the seismicity of the Earth.

Magnitude Calculation

Currently the ISC locator calculates body and surface wave magnitudes. MS is calculated for shallow events (depth < 60 km) only. At least three station magnitudes are required for a network (mb or MS) magnitude. The network magnitude is defined as the median of the station magnitudes, and its uncertainty is defined as the standard median absolute deviation (SMAD) of the alpha-trimmed (alpha = 20%) station magnitudes.

The station magnitude is defined as the median of reading magnitudes for a station. The reading magnitude is defined as the magnitude computed from the maximal log(A/T) in a reading. Amplitude magnitudes are calculated for each reported amplitude-period pair.

Body-Wave Magnitudes


Body-wave magnitudes are calculated for each reported amplitude-period pair, provided that the phase is in the list of phases that can contribute to mb (P, pP, sP, AMB, IAmb, pmax), the station is between the epicentral distances $21 - 100^{\circ}$ and the period is less than 3 s.

A reading contains all parametric data reported by a single agency for an event at a station, and it may have several reported amplitude and periods. The amplitudes are measured as zero-to-peak values in nanometres. For each pair an amplitude mb is calculated.

$$mb_{amp} = log(A/T) + Q(\Delta, h) - 3 \tag{10.1}$$

If no amplitude-period pairs are reported for a reading, the body-wave magnitude is calculated using the reported logat values for log(A/T).

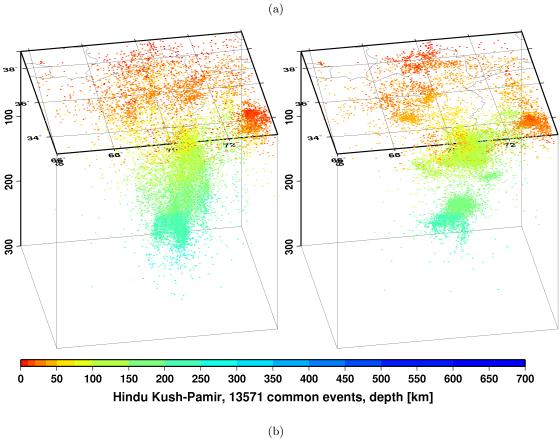


Figure 10.5: Comparison of seismicity maps for common events in the reviewed ISC Bulletin (old locator, left) and the located ISC Bulletin (new locator, right) for the North Andean (a) and Hindu Kush - Pamir regions (b). The events are better clustered when located with the new locator.

$$mb_{amp} = logat + Q(\Delta, h) - 3 \tag{10.2}$$

where the magnitude attenuation $Q(\Delta, h)$ value is calculated using the Gutenberg-Richter tables (Gutenberg and Richter, 1956).

For each reading the ISC locator finds the reported amplitude-period pair for which A/T is maximal:

$$mb_{rd} = log(max(A/T)) + Q(\Delta, h) - 3$$
(10.3)

Or, if no amplitude-period pairs were reported for the reading:

$$mb_{rd} = max(logat) + Q(\Delta, h) - 3 \tag{10.4}$$

Several agencies may report data from the same station. The station magnitude is defined as the median of the reading magnitudes for a station.

$$mb_{sta} = median(mb_{rd}) (10.5)$$

Once all station mb values are determined, the station magnitudes are sorted and the lower and upper alpha percentiles are made non-defining. The network mb and its uncertainty are then calculated as the median and the standard median absolute deviation (SMAD) of the alpha-trimmed station magnitudes, respectively.

Surface-Wave Magnitudes

Surface-wave magnitudes are calculated for each reported amplitude-period pair, provided that the phase is in the list of phases that can contribute to MS (AMS, $IAMs_20$, LR, MLR, M, L), the station is between the epicentral distances $20-160^{\circ}$ and the period is between 10-60 s.

For each reported amplitude-period pair MS is calculated using the Prague formula ($Van\check{e}k\ et\ al.$, 1962). Amplitude MS is calculated for each component (Z, E, N) separately.

$$MS_{amp} = log(A/T) + 1.66 * log(\Delta) + 0.3$$
 (10.6)

To calculate the reading MS, the ISC locator first finds the reported amplitude-period pair for which A/T is maximal on the vertical component.

$$MS_Z = log(max(A_Z/T_Z)) + 1.66 * log(\Delta) + 0.3$$
 (10.7)

Then it finds the $\max(A/T)$ for the E and N components for which the period measured on the horizontal components is within $\pm 5s$ from the period measured on the vertical component.

$$MS_E = log(max(A_E/T_E)) + 1.66 * log(\Delta) + 0.3$$
 (10.8)

$$MS_N = log(max(A_N/T_N)) + 1.66 * log(\Delta) + 0.3$$
 (10.9)

The horizontal MS is calculated as

$$max(A/T)h = \begin{cases} \sqrt{2(max(A_E/T_E))^2} & \text{if } MS_N \text{ does not exist} \\ \sqrt{(max(A_E/T_E))^2 + (max(A_N/T_N))^2} & \text{if } MS_E \text{ and } MS_N \text{ exist} \\ \sqrt{2(max(A_N/T_N))^2} & \text{if } MS_E \text{ does not exist} \end{cases}$$
(10.10)

$$MS_H = log(max(A/T)_H) + 1.66 * log(\Delta) + 0.3$$
 (10.11)

The reading MS is defined as

$$MS = \begin{cases} (MS_Z + MS_H)/2 & \text{if } MS_Z \text{ and } MS_H \text{ exist} \\ MS_H & \text{if } MS_Z \text{ does not exist} \\ MS_Z & \text{if } MS_H \text{ does not exist} \end{cases}$$
(10.12)

Several agencies may report data from the same station. The station magnitude is defined as the median of the reading magnitudes for a station.

$$MS_{sta} = median(MS_{rd})$$
 (10.13)

Once all station MS values are determined, the station magnitudes are sorted and the lower and upper alpha percentiles are made non-defining. The network MS and its uncertainty are calculated as the median and the standard median absolute deviation (SMAD) of the alpha-trimmed station magnitudes, respectively.

10.1.5 Review Process

Typically, for each month, the ISC analysts now review approximately 10-20% of the events in the ISC database, currently 3,500-5,000 per data month. This review is done about 24 months behind real time to allow for the comprehensive collection of data from networks and data centres worldwide.

Users of the ISC Bulletin can be assured that all ISC Bulletin events with an ISC hypocentre solution have been reviewed by the ISC analysts. Not all reviewed events will end up having an ISC hypocentre solution, but events that have not been reviewed are flagged accordingly.

At the beginning of analysis of each data month, events that need to be reviewed by an analyst are flagged based on the thresholding procedure described in Section 10.1.3. These events are split into daily blocks on average consisting of 100 - 150 to events. They are then analysed and if necessary edited by an analyst. After all blocks in a data month have been reviewed, they are being assessed again by a different analyst to spot any potential inconsistencies that might have been overlooked in the first run.

Analysis is done with the help of the Visual Bulletin Analysis System (VBAS) developed at ISC. For each event it shows the reported hypocentres, magnitudes and phase arrivals as well as an ISC solution for the hypocentre, if there is one, along with phase arrival-time residuals and error estimates. Amongst other visual aids, VBAS plots graphs of travel time curves, seismicity maps, depth distributions of reported hypocentres and station geometry.

The analysts have the capability to execute a variety of commands that can be used to merge or split events, to move phase arrivals or hypocentres from one event to another or to modify the reported phase names. There are also several commands to change the starting depth or location in the location algorithm.

The main tasks in reviewing the ISC Bulletin are to:

- 1. Check that the grouping of hypocentres and association of phase arrivals is appropriate.
- 2. Check that the depth and location is appropriate for the region and reported phase arrivals.
- 3. Check that no data are missing for an event, given the region and magnitude, and that included data are appropriate.
- 4. Examine the phase arrival-time residuals to check that the ISC hypocentre solution is appropriate.
- 5. Look for outliers in the observations and for misassociated phases.
- 6. Check that the azimuthal coverage for ISC hypocentres is at least 45 deg.

As well as examining each event closely, it is also important to scan the hypocentres and phase arrivals of adjacent events, close in time and space, to ensure that there is uniformity in the composition of the events. In some cases, two events should be merged into one event, as apparent in some other case. In other cases, one apparent event needs to be split into two events, when the automatic grouping has erroneously created one event with more than one reported hypocentre out of the observations for two real events that are distinct but closely occurring.

Misassociated phase arrivals are returned to the unassociated data stream, if not immediately placed by the analyst in another event where they belong, These unassociated phases are then available to be associated with some other event if the time and location is appropriate. The analysts also check that no phase is associated to more than one event.

Towards the end of the monthly analysis, the ISC 'Search' procedure runs, attempting to build events from the remaining set of unassociated phase arrivals. The algorithm is based on the methodology of *Engdahl and Gunst* (1966). Candidate events are validated or rejected by attempting to find ISC hypocentres for them using the ISC locator. The surviving events are then reviewed. Those events with phase arrival observations reported by stations from at least two networks are added to the ISC Bulletin if the solutions meet the standards set by the ISC analysts. These events have only an ISC determination of hypocentre.

At the end of analysis for a data month, a set of final checks is run for quality control, with the results reviewed by an analyst and the defects rectified. These are checks for inconsistencies and errors to ensure the general integrity of the ISC Bulletin.

10.1.6 Probabilistic Point Source Model (ISC-PPSM)

From data month January 2019 we have begun routinely calculating the earthquake moment tensor, source time function (STF) and depth for moderate magnitude (M_W 5.8 – 7.2) earthquakes. The resulting catalogue is referred to as ISC-PPSM (International Seismological Centre - Probabilistic Point Source Model). This point source calculation is performed using a Bayesian inversion technique based on the methods proposed by $St\ddot{a}hler$ and Sigloch (2014; 2016). There are three main purposes of the ISC-PPSM catalogue:

- 1. Quantifying the uncertainties in the earthquake moment tensor.
- 2. Providing new constraints on the earthquake STF, along with full error estimation.
- 3. Adding new depth resolution, especially for relatively shallow (< 40 km depth) moderate magnitude earthquakes, where surface reflected depth phases are subsumed into the earthquake STF.

The first purpose is motivated by the range of moment tensor solutions that can be reported by different agencies or methods for the same earthquake (e.g., *Lentas et al.* (2019)). It is clear that given the variability in the data and methods these different earthquake mechanisms may not be reconciled in all cases. Instead, we aim to quantify the full range of plausible earthquake mechanisms for a given event.

The second role of the ISC-PPSM catalogue is to provide new parameterised estimates of the earthquake STF. By parameterising the STF, we allow the range of plausible STFs to be assessed, but also reduce the sensitivity to near source reverberations (such as water depth phases). It is hoped that this will provide a new resource for full waveform tomographic studies, as well as earthquake physics studies.

Thirdly, and of most significance to the wider ISC operations, ISC-PPSM offers new depth resolution for remote shallow moderate magnitude earthquakes, where the depth of an ISC hypocentre would otherwise be fixed to a default or grid depth (e.g., Bondár and Storchak (2011)). As ISC-PPSM solves for both the earthquake depth and STF, the tradeoffs between depth and STF length are directly addressed. In cases where no free depth solution is possible, the ISC-PPSM depth can be fixed to by an analyst during the review process.

To allow the ISC-PPSM depth to be used in the main ISC review process, we calculate preliminary ISC-PPSM results ahead of the review process. For the preliminary ISC-PPSM result, the earthquake latitude and longitude are fixed to the USGS-PDE epicenter. After the main ISC review process, we recalculate the ISC-PPSM solution at the location of the reviewed ISC epicenter. After checking that the revised ISC-PPSM depths are consistent with any earthquake depths that were fixed to preliminary ISC-PPSM, we publish the revised ISC-PPSM solution. If the depths are not consistent to within 1 km, we relocate the ISC hypocentre at the revised ISC-PPSM depth.

10.1.7 History of Operational Changes

The following operational changes are listed here for historical archiving purpose. Some of them have effectively become irrelevant as a result of further changes.

- From data-month January 2001 onwards, both P and S groups of arrival times are used in location.
- From data-month September 2002 onwards, the printed ISC Bulletins have been generated directly from the ISC Relational Database.
- From data-month October 2002, a new location program ISCloc has been used in operations. Also, the IASPEI standard phase list has now been adopted by the ISC. Please see Section 10.2.1 for details.
- From data-month January 2003 onwards, an updated regionalisation scheme has been adopted (Young et al., 1996).
- From data-month January 2006 the ISC hypocentres are computed using the *ak135* earth velocity model (*Kennett et al.*, 1995) and then reviewed by ISC seismologists. The ISC still produces the hypocentre solutions based on Jeffreys-Bullen travel time tables (agency code ISCJB), yet these solutions are no longer reviewed.
 - Currently, the ISC is re-computing the entire ISC Bulletin as part of the Rebuild Project using ak135 and the new location program (Section 10.1.4) in order to assure homogeneity and consistency of the data in the ISC Bulletin.
- From data-month January 2009, a new location program (*Bondár and Storchak*, 2011) has been used in operations. The new program uses all predicted *ak135* phases and accounts for correlated model errors. An overview of the location algorithm is provided in this volume (Section 10.1.4).
- As of February 2020, the ISC Bulletin for the period 1964-2010 has been completely rebuilt (Storchak et al., 2017; 2020): all ISC hypocentres and magnitude have been recalculated using the algorithm by Bondár and Storchak (2011); many new previously unavailable datasets added based on extensive international correspondence with networks, data centres, temporary deployment managers and individual researchers; the Bulletin has been cleaned from phantom and poorly constrained events; many station readings have been added or corrected.

10.2 IASPEI Standards

10.2.1 Standard Nomenclature of Seismic Phases

The following list of seismic phases was approved by the IASPEI Commission on Seismological Observation and Interpretation (CoSOI) and adopted by IASPEI on 9th July 2003. More details can be found in *Storchak et al.* (2003) and *Storchak et al.* (2011). Ray paths for some of these phases are shown in Figures 10.6–10.11.

Crustal Phases	
Pg	At short distances, either an upgoing P wave from a source in the upper crust
	or a P wave bottoming in the upper crust. At larger distances also, arrivals
	caused by multiple P-wave reverberations inside the whole crust with a group
	velocity around 5.8 km/s .
Pb	Either an upgoing P wave from a source in the lower crust or a P wave bot-
	toming in the lower crust (alt: P*)

Pn Any P wave bottoming in the uppermost mantle or an upgoing P wave from a

source in the uppermost mantle

PnPn Pn free-surface reflection PgPg Pg Free-surface reflection

PmP P reflection from the outer side of the Moho

PmPN PmP multiple free surface reflection; N is a positive integer. For example,

PmP2 is PmPPmP.

PmS P to S reflection/conversion from the outer side of the Moho

Sg At short distances, either an upgoing S wave from a source in the upper crust

or an S wave bottoming in the upper crust. At larger distances also, arrivals caused by superposition of multiple S-wave reverberations and SV to P and/or

P to SV conversions inside the whole crust.

Sb Either an upgoing S wave from a source in the lower crust or an S wave bot-

toming in the lower crust (alt: S^*)

Sn Any S wave bottoming in the uppermost mantle or an upgoing S wave from a

source in the uppermost mantle

SnSn Sn free-surface reflection SgSg Sg free-surface reflection

SmS S reflection from the outer side of the Moho

SmSN SmS multiple free-surface reflection; N is a positive integer. For example, SmS2

is SmSSmS.

SmP S to P reflection/conversion from the outer side of the Moho

Lg A wave group observed at larger regional distances and caused by superposition

of multiple S-wave reverberations and SV to P and/or P to SV conversions inside the whole crust. The maximum energy travels with a group velocity of

approximately $3.5~\mathrm{km/s}$

Rg Short-period crustal Rayleigh wave

Mantle Phases

PP

P A longitudinal wave, bottoming below the uppermost mantle; also an upgoing

longitudinal wave from a source below the uppermost mantle Free-surface reflection of P wave leaving a source downward

PS P, leaving a source downward, reflected as an S at the free surface. At shorter

distances the first leg is represented by a crustal P wave.

PPP Analogous to PP

PPS PP which is converted to S at the second reflection point on the free surface;

travel time matches that of PSP

PSS PS reflected at the free surface

PcP P reflection from the core-mantle boundary (CMB)
PcS P converted to S when reflected from the CMB

PcPN PcP reflected from the free surface N-1 times; N is a positive integer. For

example PcP2 is PcPPcP.

Pz+P (alt: PzP) P reflection from outer side of a discontinuity at depth z; z may be

a positive numerical value in km. For example, P660+P is a P reflection from

the top of the 660 km discontinuity.

Pz-P P reflection from inner side of a discontinuity at depth z. For example, P660-P is

a P reflection from below the 660 km discontinuity, which means it is precursory

to PP.

Pz+S (alt:PzS) P converted to S when reflected from outer side of discontinuity at

depth z

Pz-S P converted to S when reflected from inner side of discontinuity at depth z

PScS P (leaving a source downward) to ScS reflection at the free surface

Pdif P diffracted along the CMB in the mantle (old: Pdiff)

S Shear wave, bottoming below the uppermost mantle; also an upgoing shear

wave from a source below the uppermost mantle

SS Free-surface reflection of an S wave leaving a source downward

SP S, leaving a source downward, reflected as P at the free surface. At shorter

distances the second leg is represented by a crustal P wave.

SSS Analogous to SS

- Appendix

SS converted to P when reflected from the free surface; travel time matches
that of SPS
SP reflected at the free surface
S reflection from the CMB
S converted to P when reflected from the CMB
ScS multiple free-surface reflection; N is a positive integer. For example ScS2 is ScSScS.
S reflection from outer side of a discontinuity at depth z ; z may be a positive numerical value in km. For example S660+S is an S reflection from the top of the 660 km discontinuity. (alt: SzS)
S reflection from inner side of discontinuity at depth z. For example, S660-S is an S reflection from below the 660 km discontinuity, which means it is precursory to SS.
(alt: SzP) S converted to P when reflected from outer side of discontinuity at depth z
S converted to P when reflected from inner side of discontinuity at depth z
ScS to P reflection at the free surface
S diffracted along the CMB in the mantle (old: Sdiff)

Core Phases

PKP Unspecified P wave bottoming in the core (alt: P')

PKPab P wave bottoming in the upper outer core; ab indicates the retrograde branch

of the PKP caustic (old: PKP2)

PKPbc P wave bottoming in the lower outer core; bc indicates the prograde branch of

the PKP caustic (old: PKP1)

PKPdf P wave bottoming in the inner core (alt: PKIKP)

PKPpre A precursor to PKPdf due to scattering near or at the CMB (old: PKhKP)
PKPdif P wave diffracted at the inner core boundary (ICB) in the outer core
PKS Unspecified P wave bottoming in the core and converting to S at the CMB

PKSab PKS bottoming in the upper outer core PKSbc PKS bottoming in the lower outer core

PKSdf PKS bottoming in the inner core P'P' Free-surface reflection of PKP (alt: PKPPKP)

P'N PKP reflected at the free surface N-1 times; N is a positive integer. For

example, P'3 is P'P'P'. (alt: PKPN)

P'z-P' PKP reflected from inner side of a discontinuity at depth z outside the core,

which means it is precursory to P'P'; z may be a positive numerical value in

km

P'S' (alt: PKPSKS) PKP converted to SKS when reflected from the free surface;

other examples are P'PKS, P'SKP

PS' P (leaving a source downward) to SKS reflection at the free surface (alt: PSKS)

PKKP Unspecified P wave reflected once from the inner side of the CMB

PKKPab PKKP bottoming in the upper outer core PKKPbc PKKP bottoming in the lower outer core PKKPdf PKKP bottoming in the inner core

PNKP P wave reflected N-1 times from inner side of the CMB; N is a positive

integer.

PKKPpre A precursor to PKKP due to scattering near the CMB PKiKP P wave reflected from the inner core boundary (ICB) PKNIKP P wave reflected N-1 times from the inner side of the ICB PKJKP P wave traversing the outer core as P and the inner core as S

PKKS P wave reflected once from inner side of the CMB and converted to S at the

CMB

PKKSab PKKS bottoming in the upper outer core PKKSbc PKKS bottoming in the lower outer core PKKSdf PKKS bottoming in the inner core

PcPP' PcP to PKP reflection at the free surface; other examples are PcPS', PcSP',

PcSS', PcPSKP, PcSSKP. (alt: PcPPKP)

SKS unspecified S wave traversing the core as P (alt: S')

SKSac SKS bottoming in the outer core

SKSdf SKS bottoming in the inner core (alt: SKIKS)

SPdifKS SKS wave with a segment of mantleside Pdif at the source and/or the receiver

side of the ray path (alt: SKPdifS)

SKP Unspecified S wave traversing the core and then the mantle as P

SKPab SKP bottoming in the upper outer core SKPbc SKP bottoming in the lower outer core SKPdf SKP bottoming in the inner core

S'S' Free-surface reflection of SKS (alt: SKSSKS)

S'N SKS reflected at the free surface N-1 times; N is a positive integer

S'z-S' SKS reflected from inner side of discontinuity at depth z outside the core, which

means it is precursory to S'S'; z may be a positive numerical value in km.

S'P' (alt: SKSPKP) SKS converted to PKP when reflected from the free surface;

other examples are S'SKP, S'PKS.

S'P (alt: SKSP) SKS to P reflection at the free surface

SKKS Unspecified S wave reflected once from inner side of the CMB

SKKSac SKKS bottoming in the outer core SKKSdf SKKS bottoming in the inner core

SNKS S wave reflected N - 1 times from inner side of the CMB; N is a positive integer.

SKiKS S wave traversing the outer core as P and reflected from the ICB SKJKS S wave traversing the outer core as P and the inner core as S

SKKP S wave traversing the core as P with one reflection from the inner side of the

CMB and then continuing as P in the mantle

SKKPab SKKP bottoming in the upper outer core SKKPbc SKKP bottoming in the lower outer core SKKPdf SKKP bottoming in the inner core

ScSs' ScS to SKS reflection at the free surface; other examples are ScPS', ScSP',

ScPP', ScSSKP, ScPSKP. (alt: ScSSKS)

Near-source Surface reflections (Depth Phases)

pPy All P-type onsets (Py), as defined above, which resulted from reflection of an

upgoing P wave at the free surface or an ocean bottom. WARNING: The character y is only a wild card for any seismic phase, which could be generated

at the free surface. Examples are pP, pPKP, pPP, pPcP, etc.

Py All Py resulting from reflection of an upgoing S wave at the free surface or an

ocean bottom; for example, sP, sPKP, sPP, sPcP, etc.

pSy All S-type onsets (Sy), as defined above, which resulted from reflection of an

upgoing P wave at the free surface or an ocean bottom; for example, pS, pSKS,

pSS, pScP, etc.

Sy All Sy resulting from reflection of an upgoing S wave at the free surface or an

ocean bottom; for example, sSn, sSs, sScS, sSdif, etc.

pwPy All Py resulting from reflection of an upgoing P wave at the ocean's free surface pmPy All Py resulting from reflection of an upgoing P wave from the inner side of

the Moho

Surface Waves

L Unspecified long-period surface wave

LQ Love wave LR Rayleigh wave

G Mantle wave of Love type

GN Mantle wave of Love type; N is integer and indicates wave packets traveling

along the minor arcs (odd numbers) or major arc (even numbers) of the great

circle

R Mantle wave of Rayleigh type

RN Mantle wave of Rayleigh type; N is integer and indicates wave packets traveling

along the minor arcs (odd numbers) or major arc (even numbers) of the great

circle

PL Fundamental leaking mode following P onsets generated by coupling of P energy

into the waveguide formed by the crust and upper mantle SPL S wave coupling

into the PL waveguide; other examples are SSPL, SSSPL.

Acoustic Phases

H A hydroacoustic wave from a source in the water, which couples in the ground

HPg H phase converted to Pg at the receiver side HSg H phase converted to Sg at the receiver side HRg H phase converted to Rg at the receiver side

I An atmospheric sound arrival which couples in the ground

IPg I phase converted to Pg at the receiver side ISg I phase converted to Sg at the receiver side IRg I phase converted to Rg at the receiver side

T A tertiary wave. This is an acoustic wave from a source in the solid earth,

usually trapped in a low-velocity oceanic water layer called the SOFAR channel

(SOund Fixing And Ranging).

TPg T phase converted to Pg at the receiver side TSg T phase converted to Sg at the receiver side TRg T phase converted to Rg at the receiver side

Amplitude Measurement Phases

The following set of amplitude measurement names refers to the IASPEI Magnitude Standard (see www.iaspei.org/commissions/CSOI/Summary_of_WG_recommendations.pdf) compliance to which is indicated by the presence of leading letter I. The absence of leading letter I indicates that a measurement is non-standard. Letter A indicates a measurement in nm made on a displacement seismogram, whereas letter V indicates a measurement in nm/s made on a velocity seismogram.

IAML Displacement amplitude measured according to the IASPEI standard for local

magnitude ML

IAMs 20 Displacement amplitude measured according to IASPEI standard for surface-

wave magnitude MS(20)

IVMs_BB Velocity amplitude measured according to IASPEI standard for broadband

surface-wave magnitude MS(BB)

IAmb Displacement amplitude measured according to IASPEI standard for short-

period teleseismic body-wave magnitude mb

IVmB BB Velocity amplitude measured according to IASPEI standard for broadband

teleseismic body-wave magnitude mB(BB)

 AX_{IN} Displacement amplitude of phase of type X (e.g., PP, S, etc), measured

on an instrument of type IN (e.g., SP - short-period, LP - long-period,

BB - broadband)

VX IN Velocity amplitude of phase of type X and instrument of type IN (as above)

A Unspecified displacement amplitude measurement V Unspecified velocity amplitude measurement

AML Displacement amplitude measurement for nonstandard local magnitude

AMs Displacement amplitude measurement for nonstandard surface-wave magnitude
Amb Displacement amplitude measurement for nonstandard short-period body-wave

magnitude

AmB Displacement amplitude measurement for nonstandard medium to long-period

body-wave magnitude

END Time of visible end of record for duration magnitude

Unidentified Arrivals

x unidentified arrival (old: i, e, NULL) rx unidentified regional arrival (old: i, e, NULL)

tx unidentified regional arrival (old: i, e, NULL)
tx unidentified teleseismic arrival (old: i, e, NULL)
Px unidentified arrival of P type (old: i, e, NULL, (P), P?)
Sx unidentified arrival of S type (old: i, e, NULL, (S), S?)

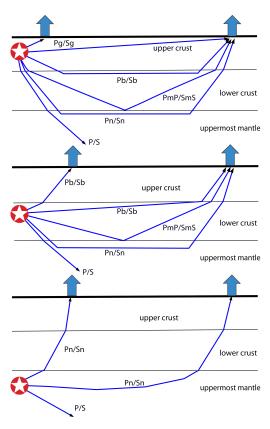


Figure 10.6: Seismic 'crustal phases' observed in the case of a two-layer crust in local and regional distance ranges (0° <D< about 20°) from the seismic source in the: upper crust (top); lower crust (middle); and uppermost mantle (bottom).

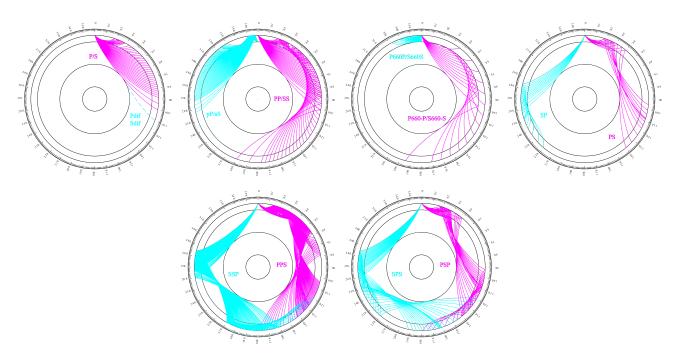
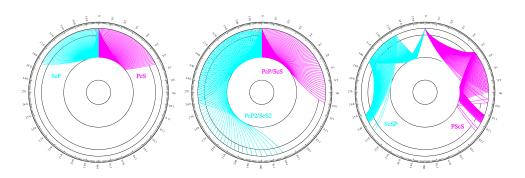



Figure 10.7: Mantle phases observed at the teleseismic distance range $D > about 20^{\circ}$.

 $\textbf{\textit{Figure 10.8:}} \ \textit{Reflections from the Earth's core.}$

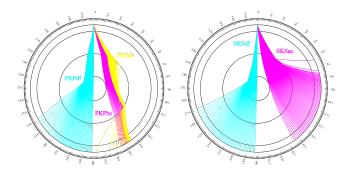


Figure 10.9: Seismic rays of direct core phases.

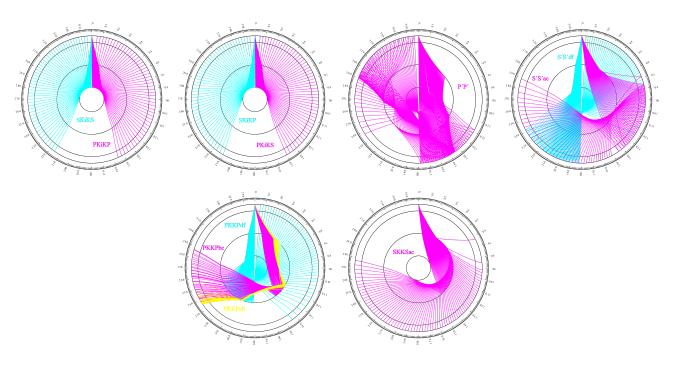


Figure 10.10: Seismic rays of single-reflected core phases.

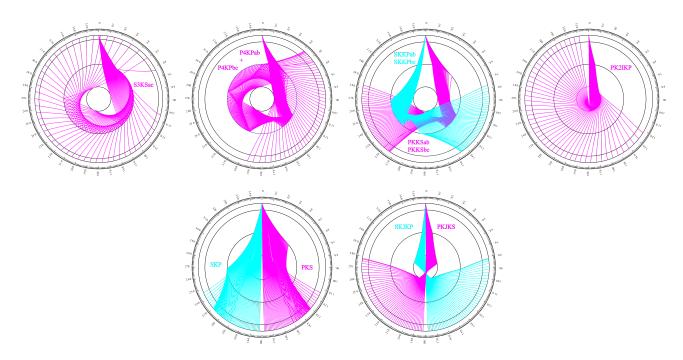


Figure 10.11: Seismic rays of multiple-reflected and converted core phases.

10.2.2 Flinn-Engdahl Regions

The Flinn-Engdahl regions were first proposed by Flinn and Engdahl (1965), with the standard defined by Flinn et al. (1974). The latest version of the schema, published by Young et al. (1996), divides the Earth into 50 seismic regions (Figure 10.12), which are further subdivided producing a total of 754 geographical regions (listed below). The geographic regions are numbered 1 to 757 with regions 172, 299 and 550 no longer in use. The boundaries of these regions are defined at one-degree intervals.

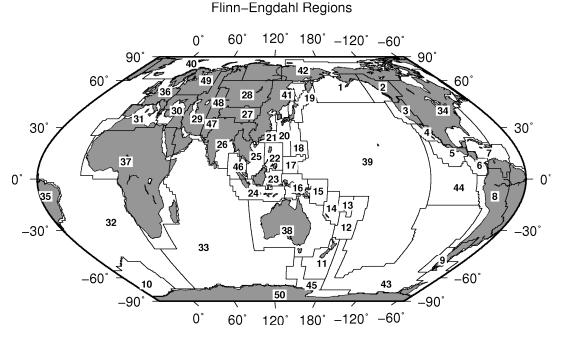


Figure 10.12: Map of all Flinn-Engdahl seismic regions.

Seismic Region 1 Alaska-Aleutian Arc

- 1. Central Alaska
- 2. Southern Alaska
- 3. Bering Sea
- 4. Komandorsky Islands region
- 5. Near Islands
- 6. Rat Islands
- 7. Andreanof Islands
- 8. Pribilof Islands
- 9. Fox Islands
- 10. Unimak Island region
- 11. Bristol Bay
- 12. Alaska Peninsula
- 13. Kodiak Island region
- 14. Kenai Peninsula
- 15. Gulf of Alaska
- 16. South of Aleutian Islands
- 17. South of Alaska

Seismic Region 2 Eastern Alaska to Vancouver Island

- 18. Southern Yukon Territory
- 19. Southeastern Alaska
- 20. Off coast of southeastern Alaska
- 21. West of Vancouver Island
- 22. Queen Charlotte Islands region
- 23. British Columbia
- 24. Alberta
- 25. Vancouver Island region
- 26. Off coast of Washington
- 27. Near coast of Washington
- 28. Washington-Oregon border region
- 29. Washington

Seismic Region 3 California-Nevada Region

- 30. Off coast of Oregon
- 31. Near coast of Oregon
- $32.\,\mathrm{Oregon}$
- 33. Western Idaho
- 34. Off coast of northern California
- $35.\,\mathrm{Near}$ coast of northern California
- 36. Northern California
- 37. Nevada
- 38. Off coast of California
- 39. Central California
- 40. California-Nevada border region
- 41. Southern Nevada
- 42. Western Arizona
- 43. Southern California
- $44.\,{\rm California}\textsc{-Arizona}$ border region
- 45. California-Baja California border region
- 46. Western Arizona-Sonora border

region

Seismic Region 4 Lower California and Gulf of California

- 47. Off west coast of Baja California
- 48. Baja California
- 49. Gulf of California
- 50. Sonora
- 51. Off coast of central Mexico
- 52. Near coast of central Mexico

Seismic Region 5

Mexico-Guatemala Area

- 53. Revilla Gigedo Islands region
- 54. Off coast of Jalisco
- 55. Near coast of Jalisco
- 56. Near coast of Michoacan
- 57. Michoacan
- 58. Near coast of Guerrero
- 59. Guerrero
- 60. Oaxaca
- 61. Chiapas
- 62. Mexico-Guatemala border region
- 63. Off coast of Mexico
- 64. Off coast of Michoacan
- 65. Off coast of Guerrero
- 66. Near coast of Oaxaca
- 67. Off coast of Oaxaca
- 68. Off coast of Chiapas
- 69. Near coast of Chiapas
- 70. Guatemala
- 71. Near coast of Guatemala
- 730. Northern East Pacific Rise

Seismic Region 6 Central America

- 72. Honduras
- 73. El Salvador
- 74. Near coast of Nicaragua
- 75. Nicaragua
- 76. Off coast of central America
- 77. Off coast of Costa Rica
- 78. Costa Rica
- 79. North of Panama
- 80. Panama-Costa Rica border region
- $81.\,\mathrm{Panama}$
- 82. Panama-Colombia border region
- 83. South of Panama

Seismic Region 7 Caribbean Loop

- 84. Yucatan Peninsula
- 85. Cuba region
- 86. Jamaica region

- 87. Haiti region
- 88. Dominican Republic region
- 89. Mona Passage
- 90. Puerto Rico region
- 91. Virgin Islands
- 92. Leeward Islands
- 93. Belize
- 94. Caribbean Sea
- 95. Windward Islands
- 96. Near north coast of Colombia
- 97. Near coast of Venezuela
- 98. Trinidad
- 99. Northern Colombia
- 100. Lake Maracaibo
- 101. Venezuela
- 731. North of Honduras

Seismic Region 8 Andean South America

- 102. Near west coast of Colombia
- 103. Colombia
- 104. Off coast of Ecuador
- 105. Near coast of Ecuador
- $106.\,\mathrm{Colombia}\text{-}\mathrm{Ecuador}$ border region
- 107. Ecuador
- 108. Off coast of northern Peru
- 109. Near coast of northern Peru
- 110. Peru-Ecuador border region
- 111. Northern Peru
- 112. Peru-Brazil border region
- 113. Western Brazil
- 114. Off coast of Peru
- 115. Near coast of Peru
- 116. Central Peru
- 117. Southern Peru
- 118. Peru-Bolivia border region
- 119. Northern Bolivia
- 120. Central Bolivia121. Off coast of northern Chile
- 122. Near coast of northern Chile
- 123. Northern Chile
- 124. Chile-Bolivia border region
- 125. Southern Bolivia
- 126. Paraguay
- 127. Chile-Argentina border region
- 128. Jujuy Province
- 129. Salta Province
- 130. Catamarca Province
- 131. Tucuman Province
- 132. Santiago del Estero Province
- 133. Northeastern Argentina
- 134. Off coast of central Chile
- 135. Near coast of central Chile 136. Central Chile
- 137. San Juan Province
- 138. La Rioja Province
- 139. Mendoza Province

140. San Luis Province

141. Cordoba Province

142. Uruguay

Seismic Region 9 Extreme South America

143. Off coast of southern Chile

144. Southern Chile

145. Southern Chile-Argentina bor-

der region

146. Southern Argentina

Seismic Region 10 Southern Antilles

147. Tierra del Fuego

148. Falkland Islands region

149. Drake Passage

150. Scotia Sea

151. South Georgia Island region

152. South Georgia Rise

153. South Sandwich Islands region

154. South Shetland Islands

155. Antarctic Peninsula

156. Southwestern Atlantic Ocean

157. Weddell Sea

732. East of South Sandwich Islands

Seismic Region 11 New Zealand Region

158. Off west coast of North Island

159. North Island

160. Off east coast of North Island

161. Off west coast of South Island

162. South Island

163. Cook Strait

164. Off east coast of South Island

165. North of Macquarie Island

166. Auckland Islands region

167. Macquarie Island region

168. South of New Zealand

Seismic Region 12

Kermadec-Tonga-Samoa Area

 $169.\,\mathrm{Samoa}$ Islands region

170. Samoa Islands

171. South of Fiji Islands

172. West of Tonga Islands (RE-

GION NOT IN USE)

173. Tonga Islands

174. Tonga Islands region

175. South of Tonga Islands

176. North of New Zealand

177. Kermadec Islands region

178. Kermadec Islands

179. South of Kermadec Islands

Seismic Region 13 Fiji Area

180. North of Fiji Islands 181. Fiji Islands region

182. Fiji Islands

Seismic Region 14 Vanuatu (New Hebrides)

183. Santa Cruz Islands region

184. Santa Cruz Islands

185. Vanuatu Islands region

186. Vanuatu Islands

187. New Caledonia

188. Loyalty Islands

189. Southeast of Loyalty Islands

Seismic Region 15 Bismarck and Solomon Islands

190. New Ireland region

191. North of Solomon Islands

192. New Britain region

193. Bougainville-Solomon Islands region

194. D'Entrecasteaux Islands region

195. South of Solomon Islands

Seismic Region 16 New Guinea

196. Irian Jaya region

197. Near north coast of Irian Jaya

198. Ninigo Islands region

199. Admiralty Islands region

200. Near north coast of New Guinea

201. Irian Jaya

202. New Guinea

203. Bismarck Sea

204. Aru Islands region

205. Near south coast of Irian Jaya

206. Near south coast of New Guinea

207. Eastern New Guinea region

208. Arafura Sea

Seismic Region 17 Caroline Islands to Guam

209. Western Caroline Islands

210. South of Mariana Islands

Seismic Region 18 Guam to Japan

211. Southeast of Honshu

212. Bonin Islands region

213. Volcano Islands region

214. West of Mariana Islands

215. Mariana Islands region

216. Mariana Islands

Seismic Region 19 Japan-Kurils-Kamchatka

217. Kamchatka Peninsula

218. Near east coast of Kamchatka Peninsula

219. Off east coast of Kamchatka Peninsula

220. Northwest of Kuril Islands

221. Kuril Islands

222. East of Kuril Islands

223. Eastern Sea of Japan

224. Hokkaido region

225. Off southeast coast of Hokkaido

226. Near west coast of eastern Hon-

227. Eastern Honshu

228. Near east coast of eastern Honshu

229. Off east coast of Honshu

230. Near south coast of eastern Honshu

Seismic Region 20

Southwestern Japan and Ryukyu Islands

231. South Korea

232. Western Honshu

233. Near south coast of western Honshu

234. Northwest of Ryukyu Islands

235. Kyushu

236. Shikoku

237. Southeast of Shikoku

238. Ryukyu Islands

239. Southeast of Ryukyu Islands

240. West of Bonin Islands

241. Philippine Sea

Seismic Region 21 Taiwan

242. Near coast of southeastern China

243. Taiwan region

244. Taiwan

245. Northeast of Taiwan

246. Southwestern Ryukyu Islands

247. Southeast of Taiwan

Seismic Region 22 Philippines

248. Philippine Islands region

249. Luzon

250. Mindoro

251. Samar

252. Palawan

253. Sulu Sea 254. Panay

125

255. Cebu

256. Leyte

257. Negros

258. Sulu Archipelago

259. Mindanao

260. East of Philippine Islands

Seismic Region 23 Borneo-Sulawesi

261. Borneo

262. Celebes Sea

263. Talaud Islands

264. North of Halmahera

265. Minahassa Peninsula, Sulawesi

266. Northern Molucca Sea

267. Halmahera

268. Sulawesi

269. Southern Molucca Sea

270. Ceram Sea

271. Buru

272. Seram

Seismic Region 24 Sunda Arc

273. Southwest of Sumatera

274. Southern Sumatera

275. Java Sea

276. Sunda Strait

277. Jawa

278. Bali Sea

279. Flores Sea

280. Banda Sea

281. Tanimbar Islands region

282. South of Jawa

283. Bali region

284. South of Bali

285. Sumbawa region

286. Flores region

287. Sumba region

288. Savu Sea

289. Timor region

290. Timor Sea

291. South of Sumbawa

292. South of Sumba

293. South of Timor

Seismic Region 25

Myanmar and Southeast Asia

294. Myanmar-India border region

295. Myanmar-Bangladesh border region

296. Myanmar

297. Myanmar-China border region

298. Near south coast of Myanmar

299. Southeast Asia (REGION NOT

IN USE)

300. Hainan Island

301. South China Sea

733. Thailand

734. Laos

735. Kampuchea

736. Vietnam

737. Gulf of Tongking

Seismic Region 26 India-Xizang-Szechwan-

Yunnan

302. Eastern Kashmir

303. Kashmir-India border region

304. Kashmir-Xizang border region

305. Western Xizang-India border

region

306. Xizang

307. Sichuan

308. Northern India

309. Nepal-India border region

310. Nepal

311. Sikkim

312. Bhutan

313. Eastern Xizang-India border re-

314. Southern India

315. India-Bangladesh border region

316. Bangladesh

317. Northeastern India

318. Yunnan

319. Bay of Bengal

Seismic Region 27 Southern Xinjiang to Gansu

320. Kyrgyzstan-Xinjiang border re-

321. Southern Xinjiang

322. Gansu

323. Western Nei Mongol

324. Kashmir-Xinjiang border region

325. Qinghai

Seismic Region 28 Alma-Ata to Lake Baikal

326. Southwestern Siberia

327. Lake Baykal region

328. East of Lake Baykal

329. Eastern Kazakhstan

330. Lake Issyk-Kul region

331. Kazakhstan-Xinjiang border re-

332. Northern Xinjiang

333. Tuva-Buryatia-Mongolia der region

334. Mongolia

Seismic Region 29 Western Asia

335. Ural Mountains region

336. Western Kazakhstan

337. Eastern Caucasus

338. Caspian Sea

339. Northwestern Uzbekistan

340. Turkmenistan

341. Iran-Turkmenistan border re-

342. Turkmenistan-Afghanistan border region

343. Turkey-Iran border region

344. Iran-Armenia-Azerbaijan border region

345. Northwestern Iran

346. Iran-Iraq border region

347. Western Iran

348. Northern and central Iran

349. Northwestern Afghanistan

350. Southwestern Afghanistan

351. Eastern Arabian Peninsula

352. Persian Gulf

353. Southern Iran

354. Southwestern Pakistan

355. Gulf of Oman

356. Off coast of Pakistan

Seismic Region 30

Middle East-Crimea-Eastern Balkans

357. Ukraine-Moldova-Southwestern

Russia region

358. Romania

359. Bulgaria

360. Black Sea

361. Crimea region

362. Western Caucasus

363. Greece-Bulgaria border region 364. Greece

365. Aegean Sea

366. Turkey 367. Turkey-Georgia-Armenia bor-

der region

368. Southern Greece

369. Dodecanese Islands

370. Crete

371. Eastern Mediterranean Sea

372. Cyprus region

373. Dead Sea region

374. Jordan-Syria region

375. Iraq

Seismic Region 31 Western Mediterranean Area

376. Portugal

377. Spain

378. Pyrenees

379. Near south coast of France

380. Corsica

381. Central Italy

382. Adriatic Sea

383. Northwestern Balkan Peninsula

384. West of Gibraltar

385. Strait of Gibraltar

386. Balearic Islands

387. Western Mediterranean Sea

388. Sardinia

389. Tyrrhenian Sea

390. Southern Italy

391. Albania

392. Greece-Albania border region

393. Madeira Islands region

394. Canary Islands region

395. Morocco

396. Northern Algeria

397. Tunisia

398. Sicily

399. Ionian Sea

400. Central Mediterranean Sea

401. Near coast of Libya

Seismic Region 32 Atlantic Ocean

402. North Atlantic Ocean

403. Northern Mid-Atlantic Ridge

404. Azores Islands region

405. Azores Islands

406. Central Mid-Atlantic Ridge

407. North of Ascension Island

408. Ascension Island region

409. South Atlantic Ocean

410. Southern Mid-Atlantic Ridge

411. Tristan da Cunha region

412. Bouvet Island region

413. Southwest of Africa

414. Southeastern Atlantic Ocean

738. Reykjanes Ridge

739. Azores-Cape St. Vincent Ridge

Seismic Region 33 Indian Ocean

415. Eastern Gulf of Aden

416. Socotra region

417. Arabian Sea

418. Lakshadweep region

419. Northeastern Somalia

420. North Indian Ocean

421. Carlsberg Ridge

422. Maldive Islands region

423. Laccadive Sea

424. Sri Lanka

425. South Indian Ocean

426. Chagos Archipelago region

427. Mauritius-Reunion region

428. Southwest Indian Ridge

429. Mid-Indian Ridge 430. South of Africa

431. Prince Edward Islands region

432. Crozet Islands region

433. Kerguelen Islands region

434. Broken Ridge

435. Southeast Indian Ridge

436. Southern Kerguelen Plateau

437. South of Australia

740. Owen Fracture Zone region

741. Indian Ocean Triple Junction

742. Western

Indian-Antarctic

Ridge

Seismic Region 34 Eastern North America

438. Saskatchewan

439. Manitoba

440. Hudson Bay

441. Ontario

442. Hudson Strait region

443. Northern Quebec

444. Davis Strait

445. Labrador

446. Labrador Sea

447. Southern Quebec

448. Gaspe Peninsula

449. Eastern Quebec

450. Anticosti Island

451. New Brunswick

452. Nova Scotia

453. Prince Edward Island

454. Gulf of St. Lawrence

455. Newfoundland

456. Montana

457. Eastern Idaho

458. Hebgen Lake region, Montana

459. Yellowstone region

460. Wyoming

461. North Dakota

462. South Dakota

463. Nebraska

464. Minnesota

465. Iowa

466. Wisconsin

467. Illinois

468. Michigan

469. Indiana

470. Southern Ontario

471. Ohio

472. New York

473. Pennsylvania

474. Vermont-New Hampshire re-

475. Maine

476. Southern New England

477. Gulf of Maine

478. Utah

479. Colorado

480. Kansas

481. Iowa-Missouri border region

482. Missouri-Kansas border region

483. Missouri

484. Missouri-Arkansas border re-

gion

485. Missouri-Illinois border region

486. New Madrid region, Missouri

487. Cape Girardeau region, Mis-

souri

488. Southern Illinois

489. Southern Indiana

490. Kentucky

491. West Virginia

492. Virginia

493. Chesapeake Bay region

494. New Jersey

495. Eastern Arizona

496. New Mexico

497. Northwestern Texas-Oklahoma

border region

498. Western Texas

499. Oklahoma

500. Central Texas 501. Arkansas-Oklahoma border re-

502. Arkansas

503. Louisiana-Texas border region

504. Louisiana

505. Mississippi

506. Tennessee

507. Alabama

508. Western Florida 509. Georgia

510. Florida-Georgia border region

511. South Carolina

512. North Carolina

513. Off east coast of United States

514. Florida Peninsula

515. Bahama Islands

516. Eastern Arizona-Sonora border

region

517. New Mexico-Chihuahua border

518. Texas-Mexico border region

519. Southern Texas 520. Near coast of Texas

521. Chihuahua

522. Northern Mexico

523. Central Mexico

524. Jalisco

525. Veracruz

526. Gulf of Mexico

527. Bay of Campeche

Seismic Region 35 Eastern South America

528. Brazil 529. Guyana 530. Suriname 531. French Guiana

Seismic Region 36 Northwestern Europe

532. Eire

533. United Kingdom

534. North Sea

535. Southern Norway

536. Sweden

537. Baltic Sea 538. France

539. Bay of Biscay

540. The Netherlands

541. Belgium

542. Denmark

543. Germany

544. Switzerland

545. Northern Italy

546. Austria

547. Czech and Slovak Republics

548. Poland

549. Hungary

Seismic Region 37 Africa

550. Northwest Africa (REGION

NOT IN USE)

551. Southern Algeria

552. Libya

553. Egypt

 $554.\,\mathrm{Red}$ Sea

555. Western Arabian Peninsula

556. Chad region

557. Sudan

558. Ethiopia

559. Western Gulf of Aden

560. Northwestern Somalia

561. Off south coast of northwest

Africa

562. Cameroon

563. Equatorial Guinea

564. Central African Republic

 $565.\,\mathrm{Gabon}$

566. Congo

567. Zaire

568. Uganda

569. Lake Victoria region

570. Kenya

571. Southern Somalia

572. Lake Tanganyika region

573. Tanzania

574. Northwest of Madagascar

575. Angola

576. Zambia

577. Malawi

578. Namibia

579. Botswana

580. Zimbabwe

581. Mozambique

582. Mozambique Channel

583. Madagascar

584. South Africa

585. Lesotho

586. Swaziland

587. Off coast of South Africa

743. Western Sahara

744. Mauritania

745. Mali

746. Senegal-Gambia region

747. Guinea region

748. Sierra Leone

749. Liberia region

750. Cote d'Ivoire

751. Burkina Faso

752. Ghana

753. Benin-Togo region

754. Niger

755. Nigeria

Seismic Region 38 Australia

588. Northwest of Australia

589. West of Australia

590. Western Australia

591. Northern Territory

592. South Australia

593. Gulf of Carpentaria

594. Queensland

595. Coral Sea

596. Northwest of New Caledonia

597. New Caledonia region

598. Southwest of Australia

599. Off south coast of Australia

600. Near coast of South Australia

601. New South Wales

602. Victoria

603. Near southeast coast of Aus-

tralia

604. Near east coast of Australia

605. East of Australia

606. Norfolk Island region

607. Northwest of New Zealand

608. Bass Strait

609. Tasmania region

 $610.\,\mathrm{Southeast}$ of Australia

Seismic Region 39 Pacific Basin

611. North Pacific Ocean

612. Hawaiian Islands region

613. Hawaiian Islands

614. Eastern Caroline Islands region

615. Marshall Islands region

616. Enewetak Atoll region

617. Bikini Atoll region

618. Gilbert Islands region

619. Johnston Island region

620. Line Islands region

621. Palmyra Island region

622. Kiritimati region

623. Tuvalu region

624. Phoenix Islands region

625. Tokelau Islands region

626. Northern Cook Islands

627. Cook Islands region

628. Society Islands region

629. Tubuai Islands region

630. Marquesas Islands region

631. Tuamotu Archipelago region 632. South Pacific Ocean

Seismic Region 40 Arctic Zone

633. Lomonosov Ridge

634. Arctic Ocean

635. Near north coast of Kalaallit

Nunaat

636. Eastern Kalaallit Nunaat

637. Iceland region

638. Iceland

639. Jan Mayen Island region

640. Greenland Sea

641. North of Svalbard

642. Norwegian Sea

643. Svalbard region

644. North of Franz Josef Land

645. Franz Josef Land

646. Northern Norway

647. Barents Sea

648. Novaya Zemlya

649. Kara Sea

650. Near coast of northwestern

050. Ne

Siberia 651. North of Severnaya Zemlya

652. Severnava Zemlya

653. Near coast of northern Siberia

654. East of Severnaya Zemlya

655. Laptev Sea

Seismic Region 41 Eastern Asia

656. Southeastern Siberia

657. Priamurye-Northeastern China

border region

658. Northeastern China

659. North Korea

660. Sea of Japan

661. Primorye

662. Sakhalin Island

663. Sea of Okhotsk

664. Southeastern China

665. Yellow Sea

666. Off east coast of southeastern China

Seismic Region 42

Northeastern Asia, Northern Alaska to Greenland

667. North of New Siberian Islands

668. New Siberian Islands

669. Eastern Siberian Sea

 $670.\,\mathrm{Near}$ north coast of eastern

Siberia

671. Eastern Siberia

672. Chukchi Sea

673. Bering Strait

674. St. Lawrence Island region

675. Beaufort Sea

676. Northern Alaska

677. Northern Yukon Territory

678. Queen Elizabeth Islands

679. Northwest Territories

680. Western Kalaallit Nunaat

681. Baffin Bay

682. Baffin Island region

Seismic Region 43 Southeastern and Antarctic Pacific Ocean

683. Southeastcentral Pacific Ocean

684. Southern East Pacific Rise

685. Easter Island region

686. West Chile Rise

687. Juan Fernandez Islands region

688. East of North Island

689. Chatham Islands region

690. South of Chatham Islands

691. Pacific-Antarctic Ridge

692. Southern Pacific Ocean

756. Southeast of Easter Island

Seismic Region 44 Galapagos Area

693. Eastcentral Pacific Ocean

694. Central East Pacific Rise

695. West of Galapagos Islands

696. Galapagos Islands region

697. Galapagos Islands

698. Southwest of Galapagos Islands

699. Southeast of Galapagos Islands

757. Galapagos Triple Junction region

Seismic Region 45 Macquarie Loop

700. South of Tasmania

701. West of Macquarie Island

702. Balleny Islands region

Seismic Region 46 Andaman Islands to Sumatera

703. Andaman Islands region

704. Nicobar Islands region

705. Off west coast of northern Sumatera

706. Northern Sumatera

707. Malay Peninsula

708. Gulf of Thailand

Seismic Region 47 Baluchistan

709. Southeastern Afghanistan

710. Pakistan

711. Southwestern Kashmir

712. India-Pakistan border region

Seismic Region 48 Hindu Kush and Pamir

713. Central Kazakhstan

714. Southeastern Uzbekistan

715. Tajikistan

716. Kyrgyzstan

717. Afghanistan-Tajikistan border

718. Hindu Kush region

719. Tajikistan-Xinjiang border re-

gion

720. Northwestern Kashmir

Seismic Region 49 Northern Eurasia

721. Finland

722. Norway-Murmansk border re-

723. Finland-Karelia border region

724. Baltic States-Belarus-

Northwestern Russia

725. Northwestern Siberia

726. Northern and central Siberia

Seismic Region 50 Antarctica

727. Victoria Land

728. Ross Sea

729. Antarctica

10.2.3 IASPEI Magnitudes

The ISC publishes a diversity of magnitude data. Although trying to be as complete and specific as possible, preference is now given to magnitudes determined according to standard procedures recommended by the Working Group on Magnitude Measurements of the IASPEI Commission on Seismological Observation and Interpretation (CoSOI). So far, such standards have been agreed upon for the local magnitude ML, the local-regional $mb_L Lg$, and for two types each of body-wave (mb and mB_B) and surface-wave magnitudes (Ms_2 0 and Ms_B). With the exception of ML, all other standard magnitudes are measured on vertical-component records only. BB stands for direct measurement on unfiltered velocity broadband records in a wide range of periods, provided that their passband covers at least the period range within which mB_B and Ms_B are supposed to be measured. Otherwise, a deconvolution has to be applied prior to the amplitude and period measurement so as to assure that this specification is met. In contrast, $mb_L Lg$, mb and Ms_2 0 are based on narrowband amplitude measurements around periods of 1 s and 20 s, respectively.

ML is consistent with the original definition of the local magnitude by Richter (1935) and mB BB in close agreement with the original definition of medium-period body-wave magnitude mB measured in a wide range of periods between some 2 to 20 s and calibrated with the Gutenberg and Richter (1956) Q-function for vertical-component P waves. Similarly, Ms BB is best tuned to the unbiased use of the IASPEI (1967) recommended standard magnitude formula for surface-wave amplitudes in a wide range of periods and distances, as proposed by its authors $Van\check{e}k$ et al. (1962). In contrast, mb and Ms 20 are chiefly based on measurement standards defined by US agencies in the 1960s in conjunction with the global deployment of the World-Wide Standard Seismograph Network (WWSSN), which did not include medium or broadband recordings. Some modifications were made in the 1970s to account for IASPEI recommendations on extended measurement time windows for mb. Although not optimal for calibrating narrow-band spectral amplitudes measured around 1 s and 20 s only, mb and Ms 20 use the same original calibrations functions as mB_BB and Ms_BB . But mb and Ms_20 data constitute by far the largest available magnitude data sets. Therefore they continue to be used, with appreciation for their advantages (e.g., mb is by far the most frequently measured teleseismic magnitude and often the only available and reasonably good magnitude estimator for small earthquakes) and their shortcomings (see section 3.2.5.2 of Chapter 3 in NMSOP-2).

Abbreviated descriptions of the standard procedures for ML, mb_Lg , mb, mB_BB and Ms_BB are summarised below. For more details, including also the transfer functions of the simulation filters to be used, see www.iaspei.org/commissions/CSOI/Summary_WG-Recommendations_20130327.pdf.

All amplitudes used in the magnitude formulas below are in most circumstances to be measured as one-half the maximum deflection of the seismogram trace, peak-to-adjacent-trough or trough-to-adjacent-peak, where the peak and trough are separated by one crossing of the zero-line: this measurement is sometimes described as "one-half peak-to-peak amplitude." The periods are to be measured as twice the time-intervals separating the peak and adjacent-trough from which the amplitudes are measured. The amplitude-phase arrival-times are to be measured and reported too as the time of the zero-crossing between the peak and adjacent-trough from which the amplitudes are measured. The issue of amplitude and period measuring procedures, and circumstances under which alternative procedures are acceptable or preferable, is discussed further in Section 5 of IS 3.3 and in section 3.2.3.3 of Chapter 3 of NMSOP-2.

Amplitudes measured according to recommended IASPEI standard procedures should be reported with the following ISF amplitude "phase names": IAML, IAmb_Lg, IAmb, IAMs_20, IVmB_BB and IVMs_BB. "I" stands for "International" or "IASPEI", "A" for displacement amplitude, measured in nm, and "V" for velocity amplitude, measured in nm/s. Although the ISC will calculate standard surface-wave magnitudes only for earthquakes shallower than 60 km, contributing agencies or stations are encouraged to report standard amplitude measurements of IAMs—20 and IVMs—BB for deeper earthquakes as well.

Note that the commonly known classical calibration relationships have been modified in the following to be consistent with displacements measured in nm, and velocities in nm/s, which is now common with high-resolution digital data and analysis tools. With these general definitions of the measurement parameters, where R is hypocentral distance in km (typically less than 1000 km), Δ is epicentral distance in degrees and h is hypocentre depth in km, the standard formulas and procedures read as follows:

ML:

$$ML = \log_{10}(A) + 1.11 \log_{10} R + 0.00189R - 2.09$$
(10.14)

for crustal earthquakes in regions with attenuative properties similar to those of southern California, and with A being the maximum trace amplitude in nm that is measured on output from a horizontal-component instrument that is filtered so that the response of the seismograph/filter system replicates that of a Wood-Anderson standard seismograph (but with a static magnification of 1). For the normalised simulated response curve and related poles and zeros see Figure 1 and Table 1 in IS 3.3 of NMSOP-2.

Equation (10.14) is an expansion of that of $Hutton\ and\ Boore$ (1987). The constant term in equation (10.14), -2.09, is based on an experimentally determined static magnification of the Wood-Anderson of 2080 (see $Uhrhammer\ and\ Collins\ (1990)$), rather than the theoretical magnification of 2800 that was specified by the seismograph's manufacturer. The formulation of equation (10.14) assures that reported ML amplitude data are not affected by uncertainty in the static magnification of the Wood-Anderson seismograph.

For seismographic stations containing two horizontal components, amplitudes are measured independently from each horizontal component and each amplitude is treated as a single datum. There is no effort to measure the two observations at the same time, and there is no attempt to compute a vector average. For crustal earthquakes in regions with attenuative properties that are different from those of coastal California and for measuring magnitudes with vertical-component seismographs the constants in the above equation have to be re-determined to adjust for the different regional attenuation and travel paths as well as for systematic differences between amplitudes measured on horizontal and vertical seismographs.

mb Lg:

$$mb \ Lg = \log_{10}(A) + 0.833 \log_{10} R + 0.434 \gamma (R - 10) - 0.87$$
 (10.15)

where A = "sustained ground-motion amplitude" in nm, defined as the third largest amplitude in the time window corresponding to group velocities of 3.6 to 3.2 km/s, in the period (T) range 0.7 s to 1.3

s; R = epicentral distance in km, $\gamma = \text{coefficient of attenuation in km}^{-1}$. γ is related to the quality factor Q through the equation $\gamma = \pi/(QUT)$, where U is group velocity and T is the wave period of the L_g wave. γ is a strong function of crustal structure and should be determined specifically for the region in which the mb_Lg is to be used. A and T are measured on output from a vertical-component instrument that is filtered so that the frequency response of the seismograph/filter system replicates that of a WWSSN short-period seismograph (see Figure 1 and Table 1 in IS 3.3 of NMSOP-2). Arrival times with respect to the origin of the seismic disturbance are used, along with epicentral distance, to compute group velocity U.

mb:

$$mb = \log_{10}(A/T) + Q(\Delta, h) - 3.0$$
 (10.16)

where A = vertical component P-wave ground amplitude in nm measured at distances $20^{\circ} \leq \Delta \leq 100^{\circ}$ and calculated from the maximum trace-amplitude with T < 3 s in the entire P-phase train (time spanned by P, pP, sP, and possibly PcP and their codas, and ending preferably before PP). A and T are measured on output from an instrument that is filtered so that the frequency response of the seismograph/filter system replicates that of a WWSSN short-period seismograph (see Figure 1 and Table 1 in IS 3.3 of NMSOP-2). A is determined by dividing the maximum trace amplitude by the magnification of the simulated WWSSN-SP response at period T.

 $Q(\Delta, h)$ = attenuation function for PZ (P-waves recorded on vertical component seismographs) established by *Gutenberg and Richter* (1956) in the tabulated or algorithmic form as used by the U.S. Geological Survey/National Earthquake Information Center (USGS/NEIC) (see Table 2 in IS 3.3 and program description PD 3.1 in NMSOP-2);

 mB_BB :

$$mB_BB = \log_{10}(V max/2\pi) + Q(\Delta, h) - 3.0$$
 (10.17)

where Vmax = vertical component ground velocity in nm/s at periods between 0.2 s < T < 30 s, measured in the range $20^{\circ} \le \Delta \le 100^{\circ}$. Vmax is calculated from the maximum trace-amplitude in the entire P-phase train (see mb), as recorded on a seismogram that is proportional to velocity at least in the period range of measurements. $Q(\Delta, h)$ = attenuation function for PZ established by Gutenberg and Richter (1956) (see 10.16). Equation (10.16) differs from the equation for mB of Gutenberg and Richter (1956) by virtue of the log_{10} ($Vmax/2\pi$) term, which replaces the classical log_{10} (A/T) $_{max}$ term. Contributors should continue to send observations of A and T to ISC.

 Ms_20 :

$$Ms_20 = \log_{10}(A/T) + 1.66\log_{10}\Delta + 0.3$$
 (10.18)

where A = vertical-component ground displacement in nm at $20^{\circ} \leq \Delta \leq 160^{\circ}$ epicentral distance measured from the maximum trace amplitude of a surface-wave phase having a period T between 18 s and 22 s on a waveform that has been filtered so that the frequency response of the seismograph/filter

replicates that of a WWSSN long-period seismograph (see Figure 1 and Table 1 in IS 3.3 of NMSOP-2). A is determined by dividing the maximum trace amplitude by the magnification of the simulated WWSSN-LP response at period T. Equation (10.18) is formally equivalent to the Ms equation proposed by $Van\check{e}k$ et al. (1962) but is here applied to vertical motion measurements in a narrow range of periods. Ms BB:

$$Ms_BB = \log_{10}(V \max/2\pi) + 1.66\log_{10}\Delta + 0.3$$
 (10.19)

where Vmax = vertical-component ground velocity in nm/s associated with the maximum trace-amplitude in the surface-wave train at periods between 3 s < T < 60 s as recorded at distances $2^{\circ} \le \Delta \le 160^{\circ}$ on a seismogram that is proportional to velocity in that range of considered periods. Equation (10.19) is based on the Ms equation proposed by $Van\check{e}k$ et al. (1962), but is here applied to vertical motion measurements and is used with the $\log_{10}{(Vmax/2\pi)}$ term replacing the $\log_{10}{(A/T)_{max}}$ term of the original. As for mB_BB , observations of A and T should be reported to ISC.

Mw:

$$Mw = (\log_{10} M_0 - 9.1) / 1.5 \tag{10.20}$$

Moment magnitude Mw is calculated from data of the scalar seismic moment M_0 (when given in Nm), or

$$Mw = (\log_{10} M_0 - 16.1) / 1.5 \tag{10.21}$$

its CGS equivalent when M_0 is in dyne-cm.

Please note that the magnitude nomenclature used in this Section uses the IASPEI standards as the reference. However, the magnitude type is typically written in plain text in most typical data reports and so it is in this document. Moreover, writing magnitude types in plain text allows us to reproduce the magnitude type as stored in the database and provides a more direct identification of the magnitude type reported by different agencies. A short description of the common magnitude types available in this Summary is given in table 7.6.

10.2.4 The IASPEI Seismic Format (ISF)

The ISF is the IASPEI approved standard format for the exchange of parametric seismological data (hypocentres, magnitudes, phase arrivals, moment tensors etc.) and is one of the formats used by the ISC. It was adopted as standard in August 2001 and is an extension of the International Monitoring System 1.0 (IMS1.0) standard, which was developed for exchanging data used to monitor the Comprehensive Nuclear-Test-Ban Treaty. An example of the ISF is shown in Listing 10.1.

Bulletins which use the ISF are comprised of origin and arrival information, provided in a series of data blocks. These include: a bulletin title block; an event title block; an origin block; a magnitude sub-block; an effect block; a reference block; and a phase block.

Within these blocks an important extension of the IMS1.0 standard is the ability to add additional comments and thus provide further parametric information. The ISF comments are distinguishable within the open parentheses required for IMS1.0 comments by beginning with a hash mark (#) followed by a keyword identifying the type of formatted comment. Each additional line required in the ISF comment begins with the hash (within the comment parentheses) followed by blank spaces at least as long as the keyword. Optional lines within the comment are signified with a plus sign (+) instead of a hash mark. The keywords include PRIME (to designate a prime origin of a hypocentre); CENTROID (to indicate the centroid origin); MOMTENS (moment tensor solution); FAULT_PLANE (fault plane solution); PRINAX (principal axes); PARAM (an origin parameter e.g. hypocentre depth given by a depth phase).

The ISC has now moved to ISF 2.1 as the default format for searches, this provides more detail primarily for the identification of arrivals. An essential change with the planned use of network codes from data year 2021.

The full documentation for the ISF 1 and 2.1 is maintained at the ISC and can be downloaded from: www.isc.ac.uk/standards/isf/download/isf21.pdf www.isc.ac.uk//standards/isf/download/isf.pdf

The documentation for the IMS1.0 standard can be downloaded from: $www.isc.ac.uk/standards/isf/download/ims1_0.pdf$

Listing 10.1: Example of an ISF 2.1 formatted event

DATA_TYPE BULLETIN ISF2.1: short Reviewed ISC Bulletin Event 619631664 Andreanof Islands Date Time Err RMS Latitude Longitude Smaj Smin Az Depth Err Ndef Nsta Gap mdist Mdist Qual Author OrigID 2021/01/03 12:38:45.00 0.980 51.1100 -179.7400 1 32.00 1 318 32.20 68.70 uk BJI 615527075 2021/01/03 12:38:47.10 0.97 51.2880 -179.7890 6.6 3.9 106 23.0 226 2021/01/03 12:38:48.00 51.1850 -179.8390 21.0 Err Ndef Nsta Gap mdist Mdist Qual Author OrigID 2021/01/03 12:38:48.00 51.1850 -179.8390 21.0 Err Ndef Nsta Gap Mdist Mdist Qual Author OrigID 2021/01/03 12:38:48 f 51.200 -179.7890 6.6 3.9 106 23.0 226 MDIS 616002310 2021/01/03 12:38:48 f 51.2200 -179.7890 F 2.7 0.5 Err Ndef Nsta Gap Mdist Mdist Qual Author OrigID 2021/01/03 12:38:48 f 51.2800 F 1.2800 F 1.2
. (# 0.000500 0.000640 0.000830 0.001060 0.001330 0.001630 0.001970 0.002260) (# 0.002600 0.002870 0.003070 0.003280 0.003460 0.003600 0.003700 0.003740) 2021/01/03 12:38:48.69 0.30 1.383 51.1476 -179.7638 4.53 3.236 177 25.2 1.69 2041 2350 26 2.06 160.04 m i ke ISC 619187305 (#PRIME) (#PRIME) (#PRIME) (#PRIME) Magnitude Err Nsta Author OrigID
mb 5.8 93 BJI 615527075 mB 6.2 74 BJI 615527075
mb 5.9 0.1 628 ISC 619187305 MS 5.9 0.1 488 ISC 619187305 Sta Dist EvAz Phase Time TRes Azim AzRes Slow SRes Def SNR Amp Per Qual Magnitude ArrID Agy Deploy Ln Auth Rep PCh ACh L Lat Lon Elev Depth ADK 2.06 67.9 Pn 12:39:23.1 1.5 T m 868429551 FDSN IU 00 AEIC NEIC BHZ ??? 51.8823 -176.6842 129.0 0.0
. MAPS 8.27 66.2 Pn 12:40:50.0 3.1 T
FUORN 82.23 353.0 P 12:51:08.125 0.5 T_ 158.7 1.78 a_mb 5.8 887040354 FDSN CH GFZ GFZ BHZ BHZ 46.6203 10.2635 2286.0 0.0 CNGN 82.29 79.8 P 12:51:08.695 0.5 T_ 43.0 1.16 a_mb 5.4 887040356 FDSN NU GFZ GFZ BHZ BHZ 12:5012 -86.6993 510.0 0.0 HUMR 82.33 342.4 P 12:51:07.363 -0.5 T_ 6_ 876829539 ISC IR BUC BUC 7?? ??? 44.5281 24.9804 0.0 0.0 DHUMR 82.32 342.4 P 12:51:06.92 -0.9 T_ 167.3 1.59 a_mb 5.8 887040356 FDSN RO GFZ GFZ BHZ BHZ 44.5281 24.9804 247.0 0.0 DH 82.33 350.6 P 12:51:07.56 -0.6 T_ 84.3 1.60 a_mb 5.6 887040352 FDSN OX GFZ GFZ HHZ HHZ 46.1733 13.6450 810.0 0.0
. TAV 96.91 81.0 IAMs_20 13:44:16.741
PTGB 132.32 76.7 PKKKP 12:58:01.04 -0.5 T e 890748236 ISC IR VAO VAO H?N ??? -24.7161 -52.0648 0.0 0.0 PTGB 132.32 76.7 PKFPdf 12:58:00.846 0.4 T = 892078547 ISC IR OSUNB OSUNB ??? ??? -24.7161 -52.0648 0.0 0.0 CANS 132.36 67.4 PKFPdf 12:58:01.03 0.4 T = 892078547 ISC IR OSUNB OSUNB ??? ??? -24.7161 -52.0648 0.0 0.0 CANS 132.36 67.4 PKFPdf 12:58:01.03 0.4 T = 892078525 ISC IR OSUNB OSUNB ??? ??? -20.2896 -46.3921 0.0 0.0 CANS 132.36 57.6 PKFPdf 12:58:02.261 -0.4 T = 892078523 ISC IR OSUNB OSUNB ??? ??? -29.6714 -56.6241 80.0 0.0 CANS 133.41 112.9 PKFPdf 12:58:02.21 0.3 T = 892078523 ISC IR OSUNB OSUNB ??? ??? -16.5835 -39.8053 0.0 0.0 CANS 133.41 112.9 PKFPdf 12:58:03.8 0.9 T = 0.2 a_ 887040460 FDSN G 00 GFZ GFZ BHZ BHZ -45.5730 -72.0814 235.0 0.0 CANS 133.41 112.9 PKFPdf 12:58:03.8 0.9 T = 0.2 a_ 887040460 FDSN G 00 GFZ GFZ BHZ BHZ -45.5730 -72.0814 235.0 0.0
. VNA3 159.34 170.9 PKPab 12:59:30.797 -0.1 T_ 28.6 0.92 C_ 848409489 ISC IR AWI AWI BHZ BHZ -71.2428 -9.6687 0.0 0.0 VNA3 159.34 170.9 PKPab 12:59:31.707 1.2 T_ 37.9 0.88 C_ 848409489 ISC IR AWI AWI BHZ BHZ -71.2428 -9.6687 0.0 0.0 VNA3 159.34 170.9 PKPab 12:59:31.707 1.2 T_ 0.3 a_ 87.040472 PDSN AW GFZ GFZ BHZ BHZ -71.2428 -9.6687 0.0 0.0 VNA1 159.60 191.0 PKPab 12:59:19.4 -2.6
STOP Agencies whose data contributed towards the results of this search:
AUST Geoscience Australia AWI Alfred Wegener Institute for Polar and Marine Research Germany .
WAR Institute of Geophysics, Polish Academy of Sciences Poland WEL Institute of Geological and Nuclear Sciences New Zealand

135

10.2.5 Ground Truth (GT) Events

Accurate locations are crucial in testing Earth models derived from body and surface wave tomography as well as in location calibration studies. 'Ground Truth' (GT) events are well-established source locations and origin times. A database of IASPEI reference events (GT earthquakes and explosions) is hosted at the ISC (www.isc.ac.uk). A full description of GT selection criteria can be found in *Bondár and McLaughlin* (2009a).

The events are coded by category GT0, GT1, GT2 or GT5, where the epicentre of a GTX event is known to within X km to a 95% confidence level. A map of all IASPEI reference events is shown in Figure 10.13 and the types of event are categorised in Figure 10.14. GT0 are explosions with announced locations and origin times. GT1 and GT2 are typically explosions, mine blasts or rock bursts either associated to explosion phenomenology located upon overhead imagery with seismically determined origin times, or precisely located by in-mine seismic networks. GT1-2 events are assumed to be shallow, but depth is unknown.

The database consists of nuclear explosions of GT0–5 quality, adopted from the Nuclear Explosion Database (Bennett et al., 2010); GT0–5 chemical explosions, rock bursts, mine-induced events, as well as a few earthquakes, inherited from the reference event set by Bondár et al. (2004); GT5 events (typically earthquakes with crustal depths) which have been identified using either the method of Bondár et al. (2008) (2,275 events) or Bondár and McLaughlin (2009a) (updated regularly from the EHB catalogue (Engdahl et al., 1998)), which uses the following criteria:

- 10 or more stations within 150 km from the epicentre
- one or more stations within 10 km
- $\Delta U \leq 0.35$
- a secondary azimuthal gap $\leq 160^{\circ}$

where ΔU is the network quality metric defined as the mean absolute deviation between the best-fitting uniformly distributed network of stations and the actual network:

$$\Delta U = \frac{4\sum |esaz_i - (unif_i + b)|}{360N}, 0 \le \Delta U \le 1$$
 (10.22)

where N is the number of stations, $esaz_i$ is the ith event-to-station azimuth, $unif_i = 360i/N$ for i = 0, ..., N - 1, and $b = avg(esaz_i) - avg(unif_i)$. ΔU is normalised so that it is 0 when the stations are uniformly distributed in azimuth and 1 when all the stations are at the same azimuth.

The seismological community is invited to participate in this project by nominating seismic events for the reference event database. Submitters may be contacted for further confirmation and for arrival time data. The IASPEI Reference Event List will be periodically published both in written and electronic form with proper acknowledgement of all submitters.

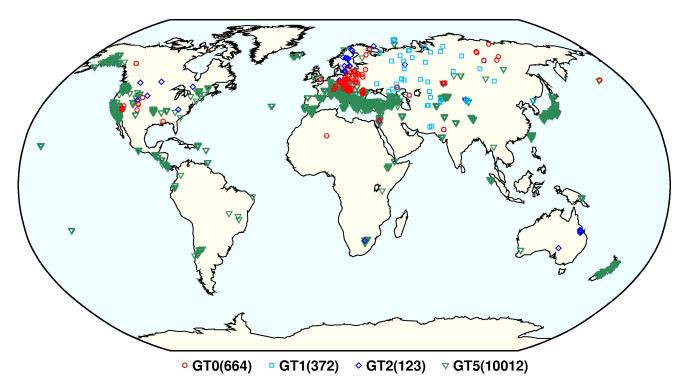


Figure 10.13: Map of all IASPEI Reference Events as of January 2023.

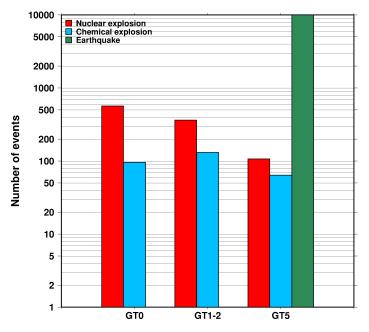


Figure 10.14: Histogram showing the event types within the IASPEI Reference Event list as of January 2023.

10.2.6 Nomenclature of Event Types

The nomenclature of event types currently used in the ISC Bulletin takes its origin from the IASPEI International Seismic Format (ISF).

Event type codes are composed of a leading character that generally indicates the confidence with which the type of the event is asserted and a trailing character that generally gives the type of the event. The leading and trailing characters may be used in any combination.

The **leading** characters are:

- \bullet s = suspected
- k = known
- f = felt (implies known)
- d = damaging (implies felt and known)

The **trailing** characters are:

- \bullet c = meteoritic event
- \bullet e = earthquake
- h = chemical explosion
- \bullet i = induced event
- l = landslide
- m = mining explosion
- \bullet n = nuclear explosion
- r = rock burst
- x = experimental explosion

A chemical explosion might be for mining or experimental purposes, and it is conceivable that other types of event might be assigned two or more different event type codes. This is deliberate, and matches the ambiguous identification of events in existing databases.

In addition, the code uk is used for events of unknown type and 1s is used for known landslides.

The frequency of the different event types designated in the ISC Bulletin since 1964 is indicated in Figure 10.15.

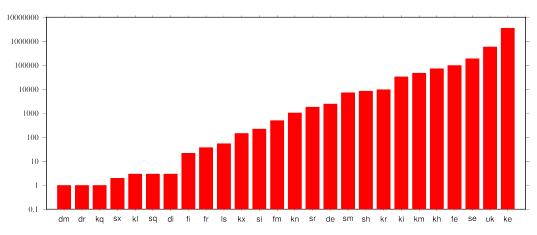


Figure 10.15: Event types in the ISC Bulletin

There are currently plans to revise this nomenclature as part of the coordination process between the National Earthquake Information Center (NEIC/USGS), European-Mediterranean Seismological Centre (CSEM) and the ISC.

10.3 Tables

Table 10.2: Listing of all 391 agencies that have directly reported to the ISC. The 150 agencies highlighted in bold have reported data to the ISC Bulletin for the period of this Bulletin Summary.

4 0 1				
Agency Code	Agency Name			
AAA	Alma-ata, Kazakhstan			
AAE	University of Addis Ababa, Ethiopia			
AAM	University of Michigan, USA			
ADE	Primary Industries and Resources SA, Australia			
ADH	Observatorio Afonso Chaves, Portugal			
AEIC	Alaska Earthquake Information Center, USA			
AFAD	Disaster and Emergency Management Presidency, Turkey			
AFAR	The Afar Depression: Interpretation of the 1960-2000 Earthquakes, Israel			
AFUA	University of Alabama, USA			
ALG	Algiers University, Algeria			
ANDRE	USSR			
ANF	USArray Array Network Facility, USA			
ANT	Antofagasta, Chile			
ARE	Instituto Geofisico del Peru, Peru			
ARO	Observatoire Géophysique d'Arta, Djibouti			
ASIES	Institute of Earth Sciences, Academia Sinica, Chinese Taipei			
ASL	Albuquerque Seismological Laboratory, USA			
ASM	University of Asmara, Eritrea			
ASRS	Altai-Sayan Seismological Centre, GS SB RAS, Russia			
ATA	The Earthquake Research Center Ataturk University, Turkey			
ATH	National Observatory of Athens, Greece			
AUST	Geoscience Australia, Australia			
AVETI	USSR			
AWI	Alfred Wegener Institute for Polar and Marine Research, Ger-			
	many			

Table 10.2: Continued.

Agency Code	Agency Name			
AZER	Republican Seismic Survey Center of Azerbaijan National			
	Academy of Sciences, Azerbaijan			
BCIS	Bureau Central International de Sismologie, France			
BDF	Observatório Sismológico da Universidade de Brasília, Brazil			
BELR	Centre of Geophysical Monitoring of the National Academy of			
	Sciences of Belarus, Republic of Belarus			
BEO	Republicki seizmoloski zavod, Serbia			
BER	University of Bergen, Norway			
BERK	Berkheimer H, Germany			
BGR	Bundesanstalt für Geowissenschaften und Rohstoffe, Germany			
BGS	British Geological Survey, United Kingdom			
BGSI	Botswana Geoscience Institute, Botswana			
BHUJ2	Study of Aftershocks of the Bhuj Earthquake by Japanese Research			
21100 2	Team, Japan			
BIAK	Biak earthquake aftershocks (17-Feb-1996), USA			
BJI	China Earthquake Networks Center, China			
BKK	Thai Meteorological Department, Thailand			
BNS	Erdbebenstation, Geologisches Institut der Universität, Köl, Germany			
BOG	Universidad Javeriana, Colombia			
BRA	Geophysical Institute, Slovak Academy of Sciences, Slovakia			
BRG	Seismological Observatory Berggießhübel, TU Bergakademie			
	Freiberg, Germany			
BRK	Berkeley Seismological Laboratory, USA			
BRS	Brisbane Seismograph Station, Australia			
BUC	National Institute for Earth Physics, Romania			
BUD	Geodetic and Geophysical Research Institute, Hungary			
BUEE	Earth & Environment, USA			
BUG	Institute of Geology, Mineralogy & Geophysics, Germany			
BUL	Goetz Observatory, Zimbabwe			
BUT	Montana Bureau of Mines and Geology, USA			
BYKL	Baykal Regional Seismological Centre, GS SB RAS, Russia			
CADCG	Central America Data Centre, Costa Rica			
CAN	Australian National University, Australia			
CANSK	Canadian and Scandinavian Networks, Sweden			
CAR	Instituto Sismologico de Caracas, Venezuela			
CASC	Central American Seismic Center, Costa Rica			
CATAC	Central American Tsunami Advisory Center, Nicaragua			
CENT	Centennial Earthquake Catalog, USA			
CERI	Center for Earthquake Research and Information, USA			
CFUSG	Inst. of Seismology and Geodynamics, V.I. Vernadsky Crimean			
	Federal University, Republic of Crimea			
\mathbf{CLL}	Geophysikalisches Observatorium Collm, Germany			
CMWS	Laboratory of Seismic Monitoring of Caucasus Mineral Water Region,			
CNG	GSRAS, Russia			
CNRM	Seismographic Station Changalane, Mozambique Contro National de Recherche, Mozacco			
COSMOS	Centre National de Recherche, Morocco			
CRAAG	Consortium of Organizations for Strong Motion Observations, USA Centre de Recherche en Astronomie, Astrophysique et Géo-			
OHAAG	,			
	physique, Algeria			

Table 10.2: Continued.

Agency Code	Agency Name			
CSC	= -			
CSEM	University of South Carolina, USA Contro Signalogique Franco Méditamanéan (CSFM/FMSC), Franco			
CUPWA	Centre Sismologique Euro-Méditerranéen (CSEM/EMSC), France Curtin University, Australia			
DASA	Defense Atomic Support Agency, USA Koninklijk Nederlands Meteorologisch Instituut, Netherlands			
DBN	Koninklijk Nederlands Meteorologisch Instituut, Netherlands			
DDA	General Directorate of Disaster Affairs, Turkey			
DHMR	Yemen National Seismological Center, Yemen			
DIAS	Dublin Institute for Advanced Studies, Ireland			
DJA	Badan Meteorologi, Klimatologi dan Geofisika, Indonesia			
DMN	National Seismological Centre, Nepal, Nepal			
DNAG	USA			
DNK	Geological Survey of Denmark and Greenland, Denmark			
DRS	Dagestan Branch, Geophysical Survey, Russian Academy of Sciences,			
	Russia			
DSN	Dubai Seismic Network, United Arab Emirates			
DUSS	Damascus University, Syria, Syria			
EAF	East African Network, Unknown			
EAGLE	Ethiopia-Afar Geoscientific Lithospheric Experiment, Unknown			
EBR	Observatori de l'Ebre, Spain			
EBSE	Ethiopian Broadband Seismic Experiment, Unknown			
ECGS	European Center for Geodynamics and Seismology, Luxembourg			
ECX	Centro de Investigación Científica y de Educación Superior de			
	Ensenada, Mexico			
EFATE	OBS Experiment near Efate, Vanuatu, USA			
EHB	Engdahl, van der Hilst and Buland, USA			
EIDC	Experimental (GSETT3) International Data Center, USA			
EKA	Eskdalemuir Array Station, United Kingdom			
ENT	Geological Survey and Mines Department, Uganda			
EPSI	Reference events computed by the ISC for EPSI project, United Kingdom			
ERDA	Energy Research and Development Administration, USA			
EST	Geological Survey of Estonia, Estonia			
EUROP	Unknown			
EVBIB	Data from publications listed in the ISC Event Bibliography, Unknown			
FBR	Fabra Observatory, Spain			
FCIAR	Federal Center for Integrated Arctic Research, Russia			
FDF	Fort de France, Martinique			
FIA0	Finessa Array, Finland			
FOR	Unknown Historical Agency, Unknown - historical agency			
FUBES	Earth Science Dept., Geophysics Section, Germany			
FUNV	Fundación Venezolana de Investigaciones Sismológicas,			
10114	Venezuela			
FUR	Geophysikalisches Observatorium der Universität München, Germany			
GBZT	Marmara Research Center, Turkey			
GCG	INSIVUMEH, Guatemala			
GCMT	The Global CMT Project, USA			
GDNRW	Geologischer Dienst Nordrhein-Westfalen, Germany			
GEN	Dipartimento per lo Studio del Territorio e delle sue Risors			
GLI	(RSNI), Italy			
GEOAZ	UMR Géoazur, France			
GLOAL	Omit Goazui, Italioc			

Table 10.2: Continued.

Agency Code	Agency Name			
GEOMR	GEOMAR, Germany			
GFZ	Helmholtz Centre Potsdam GFZ German Research Centre For			
G12	Geosciences, Germany			
GII	The Geophysical Institute of Israel, Israel			
GOM	Observatoire Volcanologique de Goma, Democratic Republic of the			
	Congo			
GRAL	National Council for Scientific Research, Lebanon			
GSDM	Geological Survey Department Malawi, Malawi			
GSET2	Group of Scientific Experts Second Technical Test 1991, April 22 - June			
	2, Unknown			
GTFE	German Task Force for Earthquakes, Germany			
GUC	Centro Sismológico Nacional, Universidad de Chile, Chile			
HAN	Hannover, Germany			
HDC	Observatorio Vulcanológico y Sismológico de Costa Rica, Costa Rica			
HEL	Institute of Seismology, University of Helsinki, Finland			
HFS	Hagfors Observatory, Sweden			
HFS1	Hagfors Observatory, Sweden			
HFS2	Hagfors Observatory, Sweden			
HIMNT	Himalayan Nepal Tibet Experiment, USA			
HKC	Hong Kong Observatory, Hong Kong			
HLUG	Hessisches Landesamt für Umwelt und Geologie, Germany			
HLW	National Research Institute of Astronomy and Geophysics,			
	\mathbf{Egypt}			
HNR	Ministry of Mines, Energy and Rural Electrification, Solomon Islands			
HON	Pacific Tsunami Warning Center - NOAA, USA			
HRVD	Harvard University, USA			
HRVD_LR	Department of Geological Sciences, Harvard University, USA			
HVO	Hawaiian Volcano Observatory, USA			
HYB	National Geophysical Research Institute, India			
HYD	National Geophysical Research Institute, India			
IAG	Instituto Andaluz de Geofisica, Spain			
IASBS	Institute for Advanced Studies in Basic Sciences, Iran			
IASPEI	IASPEI Working Group on Reference Events, USA			
ICE	Instituto Costarricense de Electricidad, Costa Rica			
IDC	International Data Centre, CTBTO, Austria			
IDG	Institute of Dynamics of Geosphere, Russian Academy of Sciences, Russian			
IFC	sia Institute of the Forth Crust, SP PAS, Pussia			
IEC	Institute of the Earth Crust, SB RAS, Russia Institute of Environmental Problems of the North, Russian Academy of			
IEPN	Institute of Environmental Problems of the North, Russian Academy of Sciences, Russia			
IFREE	Institute For Research on Earth Evolution, Japan			
IGGSL	Seismology Lab, Institute of Geology & Geophysics, Chinese Academy			
IGGSL	of Sciences, China			
IGIL	Instituto Dom Luiz, University of Lisbon, Portugal			
IGKR	Institute of Geology, Komi Science Centre, Ural Branch, Russian Academy			
	of Sciences, Russia			
IGQ	Servicio Nacional de Sismología y Vulcanología, Ecuador			
IGS	Institute of Geological Sciences, United Kingdom			
INAM	Instituto Nacional de Meteorologia e Geofisica - INAMET, Angola			

Table 10.2: Continued.

Agency Code	Agency Name					
INDEPTH3	International Deep Profiling of Tibet and the Himalayas, USA					
INET	Instituto Nicaraguense de Estudios Territoriales - INETER, Nicaragua					
INMG	Instituto Português do Mar e da Atmosfera, I.P., Portugal					
INMGC	Instituto l'ortugues do Mar e da Atmosfera, I.I., l'ortugal Instituto Nacional de Meteorologia e Geofísica, Cape Verde					
IPEC	The Institute of Physics of the Earth (IPEC), Czech Republic					
IPER	Institute of Physics of the Earth (IPEC), Czech Republic Institute of Physics of the Earth, Academy of Sciences, Moscow, Russia					
IPGP						
IPRG	Institut de Physique du Globe de Paris, France Institute for Petroleum Research and Geophysics, Israel					
IRIS	IRIS Data Management Center, USA					
IRSM	Institute of Rock Structure and Mechanics, Czech Republic					
ISC	International Seismological Centre, United Kingdom					
ISC-PPSM	International Seismological Centre, Cinted Kingdom International Seismological Centre Probabilistic Point Source					
150-1 1 5101						
ISK	Model, United Kingdom Kandilli Observatory and Research Institute, Turkey					
ISN	Iraqi Meteorological and Seismology Organisation, Iraq					
ISS	International Seismological Summary, United Kingdom					
IST	Institute of Physics of the Earth, Technical University of Istanbul, Turkey					
ISU	Institute of Seismology, Academy of Sciences, Republic of					
150	Uzbekistan, Uzbekistan					
ITU	Faculty of Mines, Department of Geophysical Engineering, Turkey					
JEN	Geodynamisches Observatorium Moxa, Germany					
JMA	, ,					
JOH	Japan Meteorological Agency, Japan Remard Price Institute of Coophysics, South Africa					
JSN	Bernard Price Institute of Geophysics, South Africa					
JSO	Jamaica Seismic Network, Jamaica					
KBC	Jordan Seismological Observatory, Jordan Institut de Recherches Géologiques et Minières, Cameroon					
KEA	Korea Earthquake Administration, Democratic People's Re-					
TXL21X	public of Korea					
KEW	Kew Observatory, United Kingdom					
KHC	Institute of Geophysics, Czech Academy of Sciences, Czech Republic					
KISR	Kuwait Institute for Scientific Research, Kuwait					
KLM	Malaysian Meteorological Service, Malaysia					
KMA	Korea Meteorological Administration, Republic of Korea					
KNET	Kyrgyz Seismic Network, Kyrgyzstan					
KOLA	Kola Regional Seismic Centre, GS RAS, Russia					
KRAR	Krasnoyarsk Scientific Research Inst. of Geology and Mineral Resources,					
	Russia, Russia					
KRL	Geodätisches Institut der Universität Karlsruhe, Germany					
KRNET	Institute of Seismology, Academy of Sciences of Kyrgyz Repub-					
	lic, Kyrgyzstan					
KRSC	Kamchatka Branch of the Geophyiscal Survey of the RAS, Rus-					
	sia					
KRSZO	Geodetic and Geophysical Reasearch Institute, Hungarian					
	Academy of Sciences, Hungary					
KSA	Observatoire de Ksara, Lebanon					
KUK	Geological Survey Department of Ghana, Ghana					
LAO	Large Aperture Seismic Array, USA					
LDG	Laboratoire de Détection et de Géophysique/CEA, France					
LDN	University of Western Ontario, Canada					
	ominately of modelli officially, called					

Table 10.2: Continued.

Agency Code	Agency Name			
LDO				
LED	Lamont-Doherty Earth Observatory, USA Landeserdbebendienst Baden-Württemberg, Germany			
	9,			
LEDBW	Landeserdbebendienst Baden-Württemberg, Germany			
LER	Besucherbergwerk Binweide Station, Germany			
LIB	Tripoli, Libya			
LIC	Station Géophysique de Lamto, Ivory Coast			
LIM	Lima, Peru			
LIS	Instituto de Meteorologia, Portugal			
LIT	Geological Survey of Lithuania, Lithuania			
LJU	Slovenian Environment Agency, Slovenia			
LPA	Universidad Nacional de La Plata, Argentina			
LPZ	Observatorio San Calixto, Bolivia			
LRSM	Long Range Seismic Measurements Project, Unknown			
LSZ	Geological Survey Department of Zambia, Zambia			
LVSN	Latvian Seismic Network, Latvia			
MAN	Philippine Institute of Volcanology and Seismology, Philippines			
MAT	The Matsushiro Seismological Observatory, Japan			
MATSS	USSR			
MCO	Macao Meteorological and Geophysical Bureau, Macao, China			
MCSM	Main Centre for Special Monitoring, Ukraine			
MDD	Instituto Geográfico Nacional, Spain			
MED RCMT	MedNet Regional Centroid - Moment Tensors, Italy			
MERI	Maharashta Engineering Research Institute, India			
MES	Messina Seismological Observatory, Italy			
MEX	Instituto de Geofísica de la UNAM, Mexico			
MIRAS	Mining Institute of the Ural Branch of the Russian Academy			
	of Sciences, Russia			
MNH	Institut für Angewandte Geophysik der Universitat Munchen, German			
MOLD	Institute of Geophysics and Geology, Moldova			
MOS	Geophysical Survey of Russian Academy of Sciences, Russia			
MOZ	Direccao Nacional de Geologia, Mozambique			
MOZAR	, Mozambique			
MRB	Institut Cartogràfic i Geològic de Catalunya, Spain			
MSI	Messina Seismological Observatory, Italy			
MSSP	Micro Seismic Studies Programme, PINSTECH, Pakistan			
MSUGS	Michigan State University, Department of Geological Sciences, USA			
MUN	Mundaring Observatory, Australia			
NAI	University of Nairobi, Kenya			
NAM	The Geological Survey of Namibia, Namibia			
NAO	Stiftelsen NORSAR, Norway			
NCEDC	Northern California Earthquake Data Center, USA			
NDI				
1111	National Centre for Seismology of the Ministry of Earth Sci-			
NEIC	ences of India, India National Farthquake Information Center, USA			
NEIS NEIS	National Earthquake Information Center, USA			
NERS	National Earthquake Information Service, USA North Fastern Regional Seigmological Centre Magadan CS			
TALICO	North Eastern Regional Seismological Centre, Magadan, G			
NIC	RAS, Russia Cyprus Coological Survey Department, Cyprus			
1410	Cyprus Geological Survey Department, Cyprus			

Table 10.2: Continued.

Agency Code	Agency Name				
NIED	National Research Institute for Earth Science and Disaster Re-				
TVILLE	silience, Japan				
NKSZ	USSR				
NNC	National Nuclear Center, Kazakhstan				
NORS	North Ossetia (Alania) Branch, Geophysical Survey, Russian Academy				
110165	of Sciences, Russia				
NOU	IRD Centre de Nouméa, New Caledonia				
NSSC	National Syrian Seismological Center, Syria				
NSSP	National Survey of Seismic Protection, Armenia				
OBM	Institute of Astronomy and Geophysics, Mongolian Academy of Sciences,				
	Mongolia				
OGAUC	Centro de Investigação da Terra e do Espaço da Universidade de Coim-				
	bra, Portugal				
OGSO	Ohio Geological Survey, USA				
OMAN	Sultan Qaboos University, Oman				
ORF	Orfeus Data Center, Netherlands				
OSPL	Observatorio Sismologico Politecnico Loyola, Dominican Re-				
	public				
OSUB	Osservatorio Sismologico Universita di Bari, Italy				
OSUNB	Observatory Seismological of the University of Brasilia, Brazil				
OTT	Canadian Hazards Information Service, Natural Resources				
	Canada, Canada				
PAL	Palisades, USA				
PAS	California Institute of Technology, USA				
PDA	Universidade dos Açores, Portugal				
PDG	Institute of Hydrometeorology and Seismology of Montenegro,				
	Montenegro				
PEK	Peking, China				
PGC	Pacific Geoscience Centre, Canada				
PJWWP	Private Observatory of Pawel Jacek Wiejacz, D.Sc., Poland				
PLV	Institute of Geophysics, Viet Nam Academy of Science and				
	Technology, Viet Nam				
PMEL	Pacific seismicity from hydrophones, USA				
PMR	Alaska Tsunami Warning Center,, USA				
PNNL	Pacific Northwest National Laboratory, USA				
PNSN	Pacific Northwest Seismic Network, USA				
PPT	Laboratoire de Géophysique/CEA, French Polynesia				
PRE	Council for Geoscience, South Africa				
PRU	Institute of Geophysics, Czech Academy of Sciences, Czech Re-				
DITIO	public				
PTO	Instituto Geofísico da Universidade do Porto, Portugal				
PTWC	Pacific Tsunami Warning Center, USA Manila Observatory, Philippines				
QCP	Manila Observatory, Philippines Pakistan Matagralasigal Department, Pakistan				
QUE	Pakistan Meteorological Department, Pakistan Egguele Politégnica Nacional Eggedor				
QUI RAB	Escuela Politécnica Nacional, Ecuador Rabaul Valcanological Observatory, Papua Now Cuinea				
RBA	Rabaul Volcanological Observatory, Papua New Guinea				
REN	Université Mohammed V, Morocco MacKay School of Mines, USA				
REY	Icelandic Meteorological Office, Iceland				
1013 1	reciandic ivieceorological Office, regiand				

Table 10.2: Continued.

Agency Name			
Republic Hydrometeorological Service, Seismological Observa-			
tory, Banja Luka, Bosnia and Herzegovina			
Laboratory of Research on Experimental and Computational			
Seimology, Italy			
Royal Melbourne Institute of Technology, Australia			
Odenbach Seismic Observatory, USA			
Istituto Nazionale di Geofisica e Vulcanologia, Italy			
Regional Research Laboratory Jorhat, India			
Red Sísmica Mexicana de Apertura Continental, Mexico			
Red Sismológica Nacional de Colombia, Colombia			
Red Sísmica de Puerto Rico, USA			
King Saud University, Saudi Arabia			
Southern Alps Passive Seismic Experiment, New Zealand			
Sarajevo Seismological Station, Bosnia and Herzegovina			
SARA Electronic Instrument s.r.l., Italy			
USSR			
Observatorio San Calixto, Bolivia			
Southern California Earthquake Data Center, USA			
Key Laboratory of Ocean and Marginal Sea Geology, South China Sea,			
China			
Universidad Autonoma de Santo Domingo, Dominican Repub-			
lic			
Geophysics Program AK-50, USA			
Setif Observatory, Algeria			
Real Instituto y Observatorio de la Armada, Spain			
Saudi Geological Survey, Saudi Arabia			
Central Seismological Observatory, India			
Subbotin Institute of Geophysics, National Academy of Sci-			
ences, Ukraine			
Seismic Institute of Kosovo, Unknown			
Scripps Institution of Oceanography, USA			
Instituto Nacional de Prevención Sísmica, Argentina			
Instituto Costarricense de Electricidad, Costa Rica			
Sakhalin Experimental and Methodological Seismological Ex-			
pedition, GS RAS, Russia			
Sakhalin Complex Scientific Research Institute, Russia			
Seismological Observatory Skopje, North Macedonia			
Salt Lake City, USA			
Saint Louis University, USA			
Servicio Nacional de Estudios Territoriales, El Salvador			
New Mexico Institute of Mining and Technology, USA			
Saudi National Seismic Network, Saudi Arabia			
National Institute of Geophysics, Geology and Geography, Bul-			
garia			
Seismological Observatory of Mount Cameroon, Cameroon			
Seismological Experimental Methodological Expedition, Kaza-			
khstan			
USGS - South Pole, Antarctica			
Service de Physique du Globe, Morocco			

Table 10.2: Continued.

A C1 -	A N			
Agency Code	Agency Name			
SPITAK	, Armenia			
SRI	Stanford Research Institute, USA			
SSN	Sudan Seismic Network, Sudan			
SSNC	Servicio Sismológico Nacional Cubano, Cuba			
SSS	Centro de Estudios y Investigaciones Geotecnicas del San Salvador, El			
COTT	Salvador			
STK	Stockholm Seismological Station, Sweden			
STR	EOST / RéNaSS, France			
STU	Stuttgart Seismological Station, Germany			
SVSA	Sistema de Vigilância Sismológica dos Açores, Portugal			
SYO	National Institute of Polar Research, Japan			
SZGRF	Seismologisches Zentralobservatorium Gräfenberg, Germany			
TAC	Estación Central de Tacubaya, Mexico			
TAN	Antananarivo, Madagascar			
TANZANIA	Tanzania Broadband Seismic Experiment, USA			
TAP	Central Weather Bureau (CWB), Chinese Taipei			
TAU	University of Tasmania, Australia			
\mathbf{TEH}	Tehran University, Iran			
TEIC	Center for Earthquake Research and Information, USA			
THE	Department of Geophysics, Aristotle University of Thessa			
	loniki, Greece			
THR	International Institute of Earthquake Engineering and Seismol-			
	ogy (IIEES), Iran			
TIF	Institute of Earth Sciences/ National Seismic Monitoring Cen-			
	ter, Georgia			
TIR	Institute of Geosciences, Polytechnic University of Tirana, Al-			
	bania			
TRI	Istituto Nazionale di Oceanografia e di Geofisica Sperimenta			
	(OGS), Italy			
TRN	The Seismic Research Centre, Trinidad and Tobago			
TTG	Titograd Seismological Station, Montenegro			
TUL	Oklahoma Geological Survey, USA			
TUN	Institut National de la Météorologie, Tunisia			
TVA	Tennessee Valley Authority, USA			
TXNET	Texas Seismological Network, University of Texas at Austin,			
	USA			
TZN	University of Dar Es Salaam, Tanzania			
UAF	Department of Geosciences, USA			
UATDG	The University of Arizona, Department of Geosciences, USA			
UAV	Red Sismológica de Los Andes Venezolanos, Venezuela			
UCB	University of Colorado, Boulder, USA			
UCC	Royal Observatory of Belgium, Belgium			
UCDES	Department of Earth Sciences, United Kingdom			
UCR	Sección de Sismología, Vulcanología y Exploración Geofísica,			
	Costa Rica			
UCSC	Earth & Planetary Sciences, USA			
UESG	School of Geosciences, United Kingdom			
UGN	Institute of Geonics AS CR, Czech Republic			
ULE	University of Leeds, United Kingdom			
	, ,			

Table 10.2: Continued.

Agency Code	Agency Name			
UNAH	Universidad Nacional Autonoma de Honduras, Honduras			
UPA	Universidad de Panama, Panama			
UPIES	Institute of Earth- and Environmental Science, Germany			
UPP	University of Uppsala, Sweden			
UPSL	University of Patras, Department of Geology, Greece			
UREES	Department of Earth and Environmental Science, USA			
USAEC	United States Atomic Energy Commission, USA			
USCGS	United States Coast and Geodetic Survey, USA			
USGS	United States Geological Survey, USA			
UTEP	Department of Geological Sciences, USA			
UUSS	The University of Utah Seismograph Stations, USA			
UVC	Universidad del Valle, Colombia			
UWMDG	University of Wisconsin-Madison, Department of Geoscience, USA			
VAO	Instituto Astronomico e Geofísico, Brazil			
\mathbf{VIE}	Zentralanstalt für Meteorologie und Geodynamik (ZAMG),			
	Austria			
VKMS	Lab. of Seismic Monitoring, Voronezh region, GSRAS & Voronezh State			
	University, Russia			
VLA	Vladivostok Seismological Station, Russia			
VSI	University of Athens, Greece			
VUW	Victoria University of Wellington, New Zealand			
WAR	Institute of Geophysics, Polish Academy of Sciences, Poland			
WASN	USA			
WBNET	Institute of Geophysics, Czech Academy of Sciences, Czech Re-			
	public			
\mathbf{WEL}	Institute of Geological and Nuclear Sciences, New Zealand			
WES	Weston Observatory, USA			
WUSTL	Washington University Earth and Planentary Sciences, USA			
YARS	Yakutiya Regional Seismological Center, GS SB RAS, Russia			
ZAG	Seismological Survey of the Republic of Croatia, Croatia			
ZEMSU	USSR			
$\mathbf{Z}\mathbf{U}\mathbf{R}$	Swiss Seismological Service (SED), Switzerland			
ZUR_RMT	Zurich Moment Tensors, Switzerland			

Table 10.3: Phases reported to the ISC. These include phases that could not be matched to an appropriate ak135 phases. Those agencies that reported at least 10% of a particular phase are also shown.

Reported Phase	Total	Agencies reporting
P	4307264	rigeneres reporting
S	2132602	JMA (15%), TAP (15%)
IAML	915597	NEIC (54%), AFAD (21%)
NULL	795804	NEIC (47%), IDC (24%)
IAmb	501782	NEIC (96%)
AML	488923	ROM (98%)
Pg	363938	ISK (36%)
Pn	299994	NEIC (33%), ISK (28%)
Sg	256463	ISK (21%), STR (12%)
LR	140870	IDC (72%), BJI (24%)
pmax	120644	MOS (71%), BJI (29%)
Sn	80667	IDC (16%)
IAMs_20	72746	NEIC (97%)
SG	70774	HEL (54%), PRU (25%)
PG	64434	HEL (57%), PRU (18%), IPEC (12%)
smax	40587 39788	HEL (78%), MOS (14%) NNC (65%), IDC (22%)
Lg PKP	35899	IDC (40%), VIE (14%)
PN	30435	MOS (40%), VIE (14%) MOS (40%), HEL (33%)
T	26373	IDC (97%)
SN	21792	HEL (78%), OTT (14%)
IAmb_Lg	20753	NEIC (100%)
IVmb Lg	19386	MDD (100%)
pP _ o	17517	BJI (29%), IDC (17%), ISC1 (12%), VIE (11%)
MLR	15230	MOS (100%)
PKPbc	15003	IDC (70%)
PKIKP	13970	MOS (98%)
PcP	13773	IDC (62%)
A	13642	JMA (56%), SKHL (44%)
SB	12051	HEL (100%)
PP	11936	BJI (21%), IDC (20%), BELR (16%)
PB	9992	HEL (100%)
SPECP	9800	AFAD (100%)
SS	8638	MOS (36%), BELR (23%), BJI (21%)
PKPdf	6929 6897	NEIC (42%), INMG (18%) BRG (27%), TRN (19%), CLL (18%), NDI (12%)
L X	6782	BJI (79%), WAR (13%)
sP	5904	BJI (68%), ISC1 (15%)
Sb	5064	IRIS (91%)
PKPab	5049	IDC (55%), INMG (15%)
Trac	4850	OTT (100%)
ScP	4670	IDC (66%), IRIS (13%), BJI (11%)
AMS	4191	PRU (73%), CLL (20%)
PKiKP	4023	IDC (37%), VIE (30%)
PPP	3900	MOS (53%), BELR (41%)
AMB	3572	SKHL (87%), BJI (12%)
Amp	3495	BRG (100%)
LRM	3233	BELR (100%)
LG	3199	BRA (76%), OTT (24%)
SSS	3142	BELR (53%), MOS (38%)
Pdiff *DD	2803	IRIS (50%), IDC (17%), VIE (15%)
*PP PKP2	2796 2498	MOS (100%) MOS (100%)
Ph Pb	2498 2426	IRIS (81%), NAO (13%)
PKKPbc	2301	IDC (93%)
LQ	2057	BELR (68%), PPT (15%), INMG (11%)
I	1742	IDC (100%)
PKhKP	1709	IDC (100%)
IVmb VC	1670	MDD (100%)
sS	1600	BJI (77%), BELR (17%)
pPKP	1553	VIE (37%), IDC (33%), BJI (15%)
SKS	1427	BJI (37%), BELR (27%), VIÈ (14%), PRU (13%)
Smax	1149	BYKL (100%)
SKPbc	1060	IDC (92%)
IVMs_BB	1014	BER (81%)
Pmax	974	BYKL (88%)
IVmB_BB	918	BER (80%), SSNC (15%)
X	859	JMA (89%)
ScS	850	BJI (66%), IDC (17%)
PKPPKP	803	IDC (98%)

Table 10.3: (continued)

Donasta I Dhana	TD-4-1	A in a and in
Reported Phase PS	Total 766	Agencies reporting MOS (45%), BELR (23%), CLL (16%)
Sgmax	748	NERS (100%)
PKKP	692	IDC (47%), VIE (40%)
Pdif	666	BJI (28%), NEIC (18%)
SKP	634	IDC (43%), VIE (17%), INMG (12%)
END AMs VX	596 564	ROM (100%) NEIC (100%)
SKSac SKSac	545	BER (40%), AWI (21%), CLL (11%)
tx	497	INMG (95%)
PKHKP	470	MOS (100%)
PDIFF	460	PRU (42%), BRA (33%), IPEC (21%)
pPKPbc	454	IDC (78%), BGR (11%)
AMd PKPAB	$\frac{448}{442}$	TIR (100%) PRU (100%)
*SS	442	MOS (100%)
*SP	420	MOS (100%)
SP	410	MOS (22%), BER (21%), BGR (15%)
р	363	MAN (68%), ROM (32%)
pPKiKP	354	VIE (66%), BELR (20%)
max	349	BYKL (100%) UDA (46%) DED (42%)
AMP sPKP	335 297	UPA (46%), BER (42%) BJI (77%), BELR (13%)
PKPDF	291	PRU (100%)
SKKS	282	BELR (54%), BJI (40%)
PKP2bc	251	IDC (100%)
s	239	MAN (100%)
Pgmax	220	NERS (100%)
SKKPbc PKKPab	$ \begin{array}{c c} 220 \\ 216 \end{array} $	IDC (93%) IDC (98%)
AmB	199	KEA (100%)
P3KPbc	193	IDC (100%)
PPS	177	CLL (59%), MOS (18%), LPA (15%)
PmP	177	BGR (59%), ZUR (41%)
PcS	171	BJI (96%)
MSG	159	HEL (100%) CLL (25%) DED (22%) INMC (22%) AWI (10%)
SKPdf SSSS	$151 \\ 146$	CLL (25%), BER (23%), INMG (22%), AWI (19%) CLL (100%)
P4KPbc	141	IDC (100%)
SmS	139	BGR (75%), ZUR (25%)
m	139	SIGU (100%)
PKS	130	BELR (48%), BJI (48%)
pPKPab	$ \begin{array}{r} 125 \\ 124 \end{array} $	IDC (48%), CLL (31%) AWI (44%), CLL (19%), UCC (13%)
pPKPdf SKKP	104	BELR (44%), IDC (31%), VIE (18%)
IAMLHF	100	BER (100%)
Н	100	IDC (99%)
PKPpre	97	NEIC (61%), PRU (28%), CLL (11%)
IVmB	97	BER (100%)
PCP	90 86	LPA (46%), PRU (39%)
pPP PKPf	86 83	LPA (59%), CLL (30%) BRG (100%)
SKPab	75	IDC (59%), INMG (32%)
PKPb	74	BRG (100%)
SKKSac	68	CLL (59%), HYB (26%)
Px	64	CLL (100%)
Sdif pPdiff	64	CLL (58%), INMG (20%), BELR (14%)
pPdiff SKIKS	62 62	VIE (77%), BGR (11%) LPA (100%)
SKIKP	59	LPA (100%)
sPKiKP	58	BELR (69%)
PKP2ab	58	IDC (100%)
PKIKS	56 56	LPA (100%)
IAML_BB	56 54	THR (100%)
sPP E	54 53	CLL (94%) YARS (47%), INMG (40%)
PKKPdf	52	AWI (88%)
r	49	BRG (100%)
SCS	44	LPA (95%)
P'P'	44	VIE (95%)
Pif	43	BRG (100%)
pPcP	42	IDC (90%)

Table 10.3: (continued)

Reported Phase	Total	Agencies reporting
P3KP	41	IDC (100%)
SME SKSdf	39 38	BJI (100%) HYB (53%), AWI (16%)
SMN	38	BJI (100%)
SgSg	38	BYKL (100%)
PPPP	35	CLL (100%)
ATPG	35	OSPL (100%)
ASSG	35	OSPL (100%)
SKiKP	35	IDC (83%)
ATSG	35	OSPL (100%)
ASPG	35	OSPL (100%)
sSKS PPMZ	34 32	BELR (97%) BJI (100%)
Sdiff	31	BGR (94%)
PSKS	30	CLL (97%)
sSS	30	CLL (93%)
(sP)	28	$\operatorname{CLL}(100\%)$
PSP	28	LPA (96%)
PgPg	28	BYKL (100%)
Rg	27	IDC (63%), BRG (22%)
SKSa	26	BRG (100%)
pwP	24	ISC1 (100%)
rx R	24 22	SKHL (88%) AWI (100%)
SDIFF	21	LPA (81%), IPEC (19%)
sPdiff	20	VIE (95%)
PKPdif	20	CLL (65%), LJU (35%)
AMI	19	TIR (100%)
(PP)	19	CLL (100%)
sPKPdf	17	HYB (47%), CLL (41%), AWI (12%)
PKPB	17	PRU (100%)
i (gg)	17	INMG (100%)
(SS) Pn 1	17 17	CLL (100%) ATH (100%)
BAZ	15	BER (80%), DNK (20%)
MSN	15	HEL (73%), BER (27%)
PKPPKPdf	15	CLL (100%)
S'S'	14	SVSA (100%)
Sif	14	BRG (100%)
PKSdf	14	CLL (86%), BER (14%)
RG	13	HEL (54%), IPEC (46%)
Pn_2 P*	12 12	ATH (100%) MOS (50%), BGR (42%)
pPKPf	12	BRG (100%)
Sx	11	CLL (100%)
PKKS	11	BELR (91%)
SPP	11	CLL (64%), BELR (18%), MOS (18%)
pPdif	11	CLL (55%), BELR (45%)
(S)	11	CFUSG (100%)
x2	11	ISC1 (100%)
(Pg)	11	CLL (82%), CFUSG (18%)
sPPP (pP)	10 10	CLL (100%) CLL (100%)
PKSbc	10	SOME (60%), CLL (40%)
sSdif	10	CLL (70%), BELR (30%)
P(2)	10	CLL (100%)
PŘP1	9	PPT (67%), LDG (33%)
PKPlp	9	CLL (100%)
sSSS	9	CLL (100%)
Plp	8	CLL (100%)
(Pn)	8	CLL (100%)
(PKPdf) IVMs	8 8	CLL (100%) BER (100%)
sPdif	8	CLL (62%), BELR (38%)
(Sg)	7	CLL (57%), CFUSG (43%)
(P)	7	CFUSG (100%)
sPKPbc	6	AWI (67%), CLL (33%)
SKSP	6	CLL (67%), BRG (33%)
Pn_3	6	ATH (100%)
SKPa	6	NAO (100%)
AP	6	MOS (100%)

Table 10.3: (continued)

Reported Phase	Total	Agangias raparting
PKPmax	6	Agencies reporting CLL (100%)
(PKPbc)	6	CLL (100%)
P'P'bc	6	AWI (100%)
(PKiKP)	6	CLL (100%)
PPPrev	5	CLL (100%)
(Sn) SKKSa	5 5	CLL (100%) BRG (100%)
PPmax	5	CLL (100%)
PKPc	5	PJWWP (100%)
sPS	5	CLL (60%), BRG (40%)
x1	4	ISC1 (100%)
sSKPdf	4	CLL (100%)
sPKPab	4	AWI (50%), INMG (25%), CLL (25%)
R2 SKKPdf	$\frac{4}{4}$	CLL (100%) CLL (50%), AWI (50%)
del	4	KNET (100%)
SKSp	4	BRA (75%), WAR (25%)
Pn_0	4	ATH (100%)
(pPKPdf)	4	CLL (100%)
pSKKSac	4	CLL (100%)
(pPKPab)	4 4	CLL (100%)
SH LH	4	SYO (100%) CLL (100%)
(PKPab)	4	CLL (100%)
(SSS)	4	CLL (100%)
(sS)	4	CLL (100%)
AMPG	4	BGS (50%), DNK (25%), BER (25%)
SCP	3	IPEC (100%)
SKKSdf PDIF	3	CLL (67%), HYB (33%) PRU (100%)
APKP	3	MOS (100%)
pS	3	WAR (67%), CLL (33%)
IVMsBB	3	HYB (67%), DNK (33%)
pSKSac	3	CLL (100%)
(SSSS)	3	CLL (100%)
PPdif	3	BER (100%) BRG (100%)
pPif sPPPP	3	CLL (100%)
S*	3	BJI (67%), BGR (33%)
sPPS	2	CLL (100%)
Pg_3	2	ATH (100%)
(P	2	CFUSG (100%)
IVmBBB	2	HYB (100%)
sSKSac IAMl	$\frac{2}{2}$	CLL (100%) SSNC (100%)
SKKPf	2	BRG (100%)
pPPS	2	CLL (100%)
P9	2	NDI (50%), UPA (50%)
(sPP)	2	CLL (100%)
SSmax SKPf	$\frac{2}{2}$	CLL (100%) BBC (100%)
pPS	$\frac{2}{2}$	BRG (100%) CLL (100%)
AMb	2	ISN (50%), LVSN (50%)
sSSSS	2	CLL (100%)
Station	2	AWI (100%)
(PKPdif)	2	CLL (100%)
PSPS	$\frac{2}{2}$	CLL (100%) RRC (50%) CLL (50%)
PSS pPKPb	$\frac{2}{2}$	BRG (50%), CLL (50%) BRG (100%)
SKSSKSac	2	CLL (100%)
Sglp	2	CLL (100%)
PKPdf(2)	2	CLL (100%)
PKPa	2	NAO (100%)
LV	2	CLL (100%)
SKPlp PPlp	$\frac{2}{2}$	CLL (100%) CLL (100%)
SKPPKPdf	$\frac{2}{2}$	CLL (100%) CLL (100%)
PnA	2	THR (100%)
Sg_2	2	ATH (100%)
SA	2	SJA (100%)
(pPKiKP)	2	CLL (100%)

Table 10.3: (continued)

Reported Phase	Total	Agonoics reporting
P4KP	2	Agencies reporting IDC (100%)
sSif	2	BRG (100%)
AMSG	2	BGS (100%)
PKKPf	1	BRG (100%)
PP(2)	1	LPA (100%)
pSPP sSKSdf	1 1	CLL (100%) CLL (100%)
sSKSP	1	CLL (100%)
M	1	LJU (100%)
PKKPbc2	1	CLL (100%)
PnPn	1	KRSZO (100%)
pSKSdf	1	CLL (100%)
PGN Unk	$\begin{array}{c c} 1 & \\ 1 & \end{array}$	HEL (100%) FCIAR (100%)
(sPPP)	1	CLL (100%)
(PcP)	1	CLL (100%)
pScP	1	CLL (100%)
(sSS)	1	CLL (100%)
SnFF	1	INMG (100%)
(sPKPdf)	1	CLL (100%)
(sSP)	$\begin{array}{c c} 1 & \\ 1 & \end{array}$	CLL (100%) BRG (100%)
(SKSdf)	1	CLL (100%)
(SKPdf)	1	CLL (100%)
pPKPlp	1	CLL (100%)
sp	1	CLL (100%)
PKKPb	1	BRG (100%)
PPP(2) (PSSrev)	1 1	LPA (100%) CLL (100%)
pPPPrev	1	CLL (100%)
sSKKSac	1	CLL (100%)
SSPrev	1	CLL (100%)
SKKPab	1	BELR (100%)
sPKP2	1	BJI (100%)
Pmlp DDKDba	1 1	CLL (100%)
PRKPbc pSdiff	1	CLL (100%) CLL (100%)
XP	1	MOS (100%)
SKPPKPbc	1	CLL (100%)
D	1	MOS (100%)
SDIF	1	PRU (100%)
PPk	1	CLL (100%)
(pPPS) P(3)	$\begin{array}{c c} 1 \\ 1 \end{array}$	CLL (100%) CLL (100%)
PPPmax	1	CLL (100%)
PcP(2)	1	CLL (100%)
sPSS	1	CLL (100%)
(PPPP)	1	CLL (100%)
(PSKS)	1	CLL (100%)
$\begin{array}{c} \mathrm{sScS} \\ \mathrm{sSP} \end{array}$	1 1	CLL (100%) CLL (100%)
i-	1	INMG (100%)
(SP)	1	CLL (100%)
(sPPS)	1	CLL (100%)
(PPS)	1	CLL (100%)
SKPdf(2)	1	CLL (100%)
PKPPKPab	1	CLL (100%)
(SKSac) SbSb	1 1	CLL (100%) KRSZO (100%)
sPSSrev	1	CLL (100%)
S(3)	1	CLL (100%)
(Pdif)	1	CLL (100%)
sSKSa	1	BRG (100%)
sPSKS	1	CLL (100%)
PKPdF (SKPab)	$\begin{array}{c c} 1 & \\ 1 & \end{array}$	INMG (100%) CLL (100%)
P(4)	1	CLL (100%) CLL (100%)
Pe	1	SSNC (100%)
Sg_3	1	ATH (100%)
pPKSdf	1	CLL (100%)
PIkP	1	SYO (100%)

Table 10.3: (continued)

D (1 D)	m , 1	A
Reported Phase	Total	Agencies reporting
(PKP)	1	CLL (100%)
SS(2)	1	LPA (100%)
pPPP	1	CLL (100%)
PSSrev	1	CLL (100%)
pPKKPbc	1	CLL (100%)
PKPabd	1	PJWWP (100%)
SPS	1	CLL (100%)
Pg_2	1	ATH (100%)
(SKKSdf)	1	CLL (100%)
pPKPdf2	1	CLL (100%)
sPKPf	1	BRG (100%)
(PSS)	1	CLL (100%)
sSKPbc	1	CLL (100%)
PPSmax	1	CLL (100%)
(SKSP)	1	CLL (100%)
pPKSbc	1	CLL (100%)

Table 10.4: Reporters of amplitude data

Agency	Number of	Number of amplitudes	Number used	Number used
0 0	reported amplitudes	in ISC located events	for ISC mb	for ISC MS
NEIC	1071621	324773	213087	34227
IDC	556245	525730	130190	73016
ROM	477855	11360	0	0
WEL	275872	43293	9	0
AFAD	188447	17037	0	0
ISK	159772	25929	0	0
GFZ	153275	153086	0	0
MOS	109980	105899	50709	9982
NNC	84059	31578	63	0
BJI	76253	74427	21065	24481
DJA	67688	54371	11287	0
ATH	66315	11713	0	0
RSNC	66276	17483	1980	0
AUST	54987	10088	7109	0
THE	53764	21404	0	0
VIE	50980	29422	10206	0
SOME	49348	19299	3017	0
INMG	40298	14534	4090	3
GUC	33230	7839	17	0
SVSA	32115	952	214	0
HEL	32038	1793	1	0
SDD	29087	9668	0	0
SSNC	23438	4309	55	0
TXNET	22108	385	0	0
MDD	21079	3485	0	0
JSO	15846	1989	90	0
JMA	15104	14914	0	0
NDI	15081	11291	3172	219
SJA	13935	12970	0	0
MAN	13641	2055	0	0
PRE	13387	628	0	0
MCSM	13020	12853	5220	0
LDG	12284	1497	0	0
BER	11792	5172	1493	415
PRU	10322	4026	0	2152
DNK	9513	5798	4712	46
SKHL	9303	4583	0	0
ZUR	8943	409	0	0
OSPL	8637	4174	0	0
MRB	8636	214	0	0
AWI	7572	4060	1800	0
BELR	7569	5078	736	1232
LJU	6831	300	0	0
PDG	6717	3725	0	0
PPT	6324	5447	339	0
BUC	6152	2060	0	0

Table 10.4: Continued.

Agency	Number of	Number of amplitudes	Number used	Number used
	reported amplitudes	in ISC located events	for ISC mb	for ISC MS
BGR	5922	5636	4219	0
NIC	5347	3257	0	0
OTT	4850	527	0	0
KRSZO	4611	661	0	0
NOU	4563	4477	2869	0
YARS	4435	394	1	0
BGS	3994	2361	1708	316
WBNET	3934	0	0	0
UCC	3671	2908	2477	0
BRG	3495	497	0	0
ECX	3226	282	0	0
TIR	2935	832	0	0
KNET	2928	1351	0	0
CLL	2671	2381	339	503
IPEC	2605	513	0	0
BYKL	2391	1408	0	0
CFUSG	2104	1951	0	0
GCG	2102	1736	0	0
BKK	2028	1011	6	0
SCB	1880	265	0	0
NAO	1786	1768	1232	0
ASRS	1581	892	0	0
BGSI	1456	332	0	0
LVSN	1438	275	0	0
SKO	1302	391	0	0
IGIL	1187	586	136	153
NERS	1011	647	0	0
UPA	985	42	0	0
THR	967	905	0	0
WAR	906	317	0	180
SIGU	787	488	0	0
KEA	679	344	0	60
FCIAR	602	227	15	0
MIRAS	595	90	0	0
DMN	535	412	0	0
SNET	395	95	0	0
NAM	382	78	0	0
ISN	359	299	0	0
PLV	104	53	0	0
HYB	101	101	0	0
PJWWP	22	21	0	0
KMA	1	1	0	0

11

Glossary of ISC Terminology

• Agency/ISC data contributor

An academic or government institute, seismological organisation or company, geological/meteorological survey, station operator or author that reports or contributed data in the past to the ISC or one of its predecessors. Agencies may contribute data to the ISC directly, or indirectly through other ISC data contributors.

• Agency code

A unique, maximum eight-character code for a data reporting agency (e.g. NEIC, GFZ, BUD) or author (e.g. ISC, ISC-EHB, IASPEI). Often the agency code is the commonly used acronym of the reporting institute.

• Arrival

A phase pick at a station is characterised by a phase name and an arrival time.

• Associated phase

Associated phase arrival or amplitude measurements represent a collection of observations belonging to (i.e. generated by) an event. The complete set of observations are associated to the prime hypocentre.

• Azimuthal gap/Secondary azimuthal gap

The azimuthal gap for an event is defined as the largest angle between two stations with defining phases when the stations are ordered by their event-to-station azimuths. The secondary azimuthal gap is the largest azimuthal gap a single station closes.

• BAAS

Seismological bulletins published by the British Association for the Advancement of Science (1913-1917) under the leadership of H.H. Turner. These bulletins are the predecessors of the ISS Bulletins and include reports from stations distributed worldwide.

• Bulletin

An ordered list of event hypocentres, uncertainties, focal mechanisms, network magnitudes, as well as phase arrival and amplitude observations associated to each event. An event bulletin may list all the reported hypocentres for an event. The convention in the ISC Bulletin is that the preferred (prime) hypocentre appears last in the list of reported hypocentres for an event.

Catalogue

An ordered list of event hypocentres, uncertainties and magnitudes. An event catalogue typically lists only the preferred (prime) hypocentres and network magnitudes.

• CoSOI/IASPEI

Commission on Seismological Observation and Interpretation, a commission of IASPEI that prepares and discusses international standards and procedures in seismological observation and interpretation.

• Defining/Non-defining phase

A defining phase is used in the location of the event (time-defining) or in the calculation of the network magnitude (magnitude-defining). Non-defining phases are not used in the calculations because they suffer from large residuals or could not be identified.

• Direct/Indirect report

A data report sent (e-mailed) directly to the ISC, or indirectly through another ISC data contributor.

• Duplicates

Nearly identical phase arrival time data reported by one or more agencies for the same station. Duplicates may be created by agencies reporting observations from other agencies, or several agencies independently analysing the waveforms from the same station.

• Event

A natural (e.g. earthquake, landslide, asteroid impact) or anthropogenic (e.g. explosion) phenomenon that generates seismic waves and its source can be identified by an event location algorithm.

• Grouping

The ISC algorithm that organises reported hypocentres into groups of events. Phases associated to any of the reported hypocentres will also be associated to the preferred (prime) hypocentre. The grouping algorithm also attempts to associate phases that were reported without an accompanying hypocentre to events.

• Ground Truth

An event with a hypocentre known to certain accuracy at a high confidence level. For instance, GT0 stands for events with exactly known location, depth and origin time (typically explosions); GT5 stands for events with their epicentre known to 5 km accuracy at the 95% confidence level, while their depth and origin time may be known with less accuracy.

• Ground Truth database

On behalf of IASPEI, the ISC hosts and maintains the IASPEI Reference Event List, a bulletin of ground truth events.

• IASPEI

International Association of Seismology and Physics of the Earth Interior, www.iaspei.org.

• International Registry of Seismograph Stations (IR)

Registry of seismographic stations, jointly run by the ISC and the World Data Center for Seismology, Denver (NEIC). The registry provides and maintains unique five-letter codes for stations participating in the international parametric and waveform data exchange.

• ISC Bulletin

The comprehensive bulletin of the seismicity of the Earth stored in the ISC database and accessible through the ISC website. The bulletin contains both natural and anthropogenic events. Currently the ISC Bulletin spans more than 50 years (1960-to date) and it is constantly extended by adding both recent and past data. Eventually the ISC Bulletin will contain all instrumentally recorded events since 1900.

• ISC Governing Council

According to the ISC Working Statutes the Governing Council is the governing body of the ISC, comprising one representative for each ISC Member.

• ISC-located events

A subset of the events selected for ISC review are located by the ISC. The rules for selecting an event for location are described in Section 10.1.3; ISC-located events are denoted by the author ISC.

• ISC Member

An academic or government institute, seismological organisation or company, geological/meteorological survey, station operator, national/international scientific organisation that contribute to the ISC budget by paying membership fees. ISC members have voting rights in the ISC Governing Council.

• ISC-reviewed events

A subset of the events reported to the ISC are selected for ISC analyst review. These events may or may not be located by the ISC. The rules for selecting an event for review are described in Section 10.1.3. Non-reviewed events are explicitly marked in the ISC Bulletin by the comment following the prime hypocentre "Event not reviewed by the ISC".

• ISF

International Seismic Format (www.isc.ac.uk/standards/isf). A standard bulletin format approved by IASPEI. The ISC Bulletin is presented in this format at the ISC website.

• ISS

International Seismological Summary (1918-1963). These bulletins are the predecessors of the ISC Bulletin and represent the major source of instrumental seismological data before the digital era. The ISS contains regionally and teleseismically recorded events from several hundreds of globally distributed stations.

• Network magnitude

The event magnitude reported by an agency or computed by the ISC locator. An agency can report several network magnitudes for the same event and also several values for the same magnitude type. The network magnitude obtained with the ISC locator is defined as the median of station magnitudes of the same magnitude type.

• Phase

A maximum eight-character code for a seismic, infrasonic, or hydroacoustic phase. During the ISC processing, reported phases are mapped to standard IASPEI phase names. Amplitude measurements are identified by specific phase names to facilitate the computation of body-wave and surface-wave magnitudes.

• Prime hypocentre

The preferred hypocentre solution for an event from a list of hypocentres reported by various agencies or calculated by the ISC.

• Reading

Parametric data that are associated to a single event and reported by a single agency from a single station. A reading typically includes one or more phase names, arrival time and/or amplitude/period measurements.

• Report/Data report

All data that are reported to the ISC are parsed and stored in the ISC database. These may include event bulletins, focal mechanisms, moment tensor solutions, macroseismic descriptions and other event comments, as well as phase arrival data that are not associated to events. Every single report sent to the ISC can be traced back in the ISC database via its unique report identifier.

• Shide Circulars

Collections of station reports for large earthquakes occurring in the period 1899-1912. These reports were compiled through the efforts of J. Milne. The reports are mainly for stations of the British Empire equipped with Milne seismographs. After Milne's death, the Shide Circulars were replaced by the Seismological Bulletins of the BAAS.

• Station code

A unique, maximum five-character code for a station. The ISC Bulletin contains data exclusively from stations registered in the International Registry of Seismograph Stations.

12

Acknowledgements

We thank our colleagues at the Institute of Geophysics and Geology of the University of Leipzig in Germany for kindly accepting our invitation and preparing an article for this issue of the Summary.

We are also grateful to the developers of the Generic Mapping Tools (GMT) suite of software (Wessel et al., 2019) that was used extensively for producing the figures.

Finally, we thank the ISC Member Institutions, Data Contributors, Funding Agencies (including NSF Award EAR-1811737 and Royal Society Award INT004) and Sponsors for supporting the long-term operation of the ISC.

References

- Adamaki, A. (2017), Seismicity Analysis Using Dense Network Data: Catalogue Statistics and Possible Foreshocks Investigated Using Empirical and Synthetic Data, Ph.D. thesis, Uppsala University, urn: nbn:se:uu:diva-328057.
- Adams, R. D., A. A. Hughes, and D. M. McGregor (1982), Analysis procedures at the International Seismological Centre, *Physics of the Earth and Planetary Interiors*, 30, 85–93.
- Amante, C., and B. W. Eakins (2009), ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, NOAA Technical Memorandum NESDIS NGDC-24, NOAA.
- Balfour, N., R. Baldwin, and A. Bird (2008), Magnitude calculations in Antelope 4.10, Analysis Group Note of Geological Survey of Canada, pp. 1–13.
- Bennett, T. J., V. Oancea, B. W. Barker, Y.-L. Kung, M. Bahavar, B. C. Kohl, J. Murphy, and I. K. Bondár (2010), The nuclear explosion database NEDB: a new database and web site for accessing nuclear explosion source information and waveforms, *Seismological Research Letters*, 81, https://doi.org/10.1785/gssrl.81.1.12.
- Bisztricsany, E. A. (1958), A new method for the determination of the magnitude of earthquakes, *Geofiz. Kozl*, pp. 69–76.
- Bolt, B. A. (1960), The revision of earthquake epicentres, focal depths and origin time using a high-speed computer, *Geophysical Journal of the Royal Astronomical Society*, 3, 434–440.
- Bondár, I., and K. McLaughlin (2009a), A new ground truth data set for seismic studies, Seismological Research Letters, 80, 465–472.
- Bondár, I., and K. McLaughlin (2009b), Seismic location bias and uncertainty in the presence of correlated and non-Gaussian travel-time errors, *Bulletin of the Seismological Society of America*, 99, 172–193.
- Bondár, I., and D. Storchak (2011), Improved location procedures at the International Seismological Centre, Geophysical Journal International, 186, 1220–1244.
- Bondár, I., E. R. Engdahl, X. Yang, H. A. A. Ghalib, A. Hofstetter, V. Kirchenko, R. Wagner, I. Gupta, G. Ekström, E. Bergman, H. Israelsson, and K. McLaughlin (2004), Collection of a reference event set for regional and teleseismic location calibration, *Bulletin of the Seismological Society of America*, 94, 1528–1545.
- Bondár, I., E. Bergman, E. R. Engdahl, B. Kohl, Y.-L. Kung, and K. McLaughlin (2008), A hybrid multiple event location technique to obtain ground truth event locations, *Geophysical Journal International*, 175, https://doi.org/10.1111/j.1365246X.2008.03867x.
- Bormann, P., and J. W. Dewey (2012), The new IASPEI standards for determining magnitudes from digital data and their relation to classical magnitudes, IS 3.3, New Manual of Seismological Observatory Practice 2 (NMSOP-2), P. Bormann (Ed.), pp. 1–44, https://doi.org/10.2312/GFZ.NMSOP-2_IS_3.3,10.2312/GFZ.NMSOP-2.
- Bormann, P., and J. Saul (2008), The new IASPEI standard broadband magnitude mB, Seism. Res. Lett, 79(5), 698–705.
- Bormann, P., R. Liu, X. Ren, R. Gutdeutsch, D. Kaiser, and S. Castellaro (2007), Chinese national network magnitudes, their Relation to NEIC magnitudes and recommendations for new IASPEI magnitude standards, *Bulletin of the Seismological Society of America*, 97(1B), 114–127, https://doi.org/10.1785/012006007835.

- Bormann, P., R. Liu, Z. Xu, R. Ren, and S. Wendt (2009), First application of the new IASPEI teleseismic magnitude standards to data of the China National Seismographic Network, *Bulletin of the Seismological Society of America*, 99, 1868–1891, https://doi.org/10.1785/0120080010.
- Chang, A. C., R. H. Shumway, R. R. Blandford, and B. W. Barker (1983), Two methods to improve location estimates preliminary results, *Bulletin of the Seismological Society of America*, 73, 281–295.
- Choy, G. L., and J. L. Boatwright (1995), Global patterns of readiated seismic energy and apparent stress, J. Geophys. Res., 100 (B9), 18,205–18,228.
- Dziewonski, A. M., and F. Gilbert (1976), The effect of small, aspherical perturbations on travel times and a re-examination of the correction for ellipticity, *Geophysical Journal of the Royal Astronomical Society*, 44, 7–17.
- Dziewonski, A. M., T.-A. Chou, and J. H. Woodhouse (1981), Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, *J. Geophys. Res.*, 86, 2825–2852.
- Engdahl, E. R., and R. H. Gunst (1966), Use of a high speed computer for the preliminary determination of earthquake hypocentres, *Bulletin of the Seismological Society of America*, 56, 325–336.
- Engdahl, E. R., and A. Villaseñor (2002), Global seismicity: 1900-1999, International Handbook of Earthquake Engineering and Seismology, International Geophysics series, 81A, 665–690.
- Engdahl, E. R., R. van der Hilst, and R. Buland (1998), Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, *Bulletin of the Seismological Society of America*, 88, 722–743.
- Flinn, E. A., and E. R. Engdahl (1965), Proposed basis for geographical and seismic regionalization, Reviews of Geophysics, 3(1), 123–149.
- Flinn, E. A., E. R. Engdahl, and A. R. Hill (1974), Seismic and geographical regionalization, *Bulletin of the Seismological Society of America*, 64, 771–993.
- Gutenberg, B. (1945a), Amplitudes of P, PP and S and magnitude of shallow earthquakes, *Bulletin of the Seismological Society of America*, 35, 57–69.
- Gutenberg, B. (1945b), Magnitude determination of deep-focus earthquakes, *Bulletin of the Seismological Society of America*, 35, 117–130.
- Gutenberg, B. (1945c), Amplitudes of surface waves and magnitudes of shallow earthquakes, *Bulletin of the Seismological Society of America*, 35, 3–12.
- Gutenberg, B., and C. F. Richter (1956), Magnitude and Energy of earthquakes, Ann. Geof., 9, 1–5.
- Hutton, L. K., and D. M. Boore (1987), The ML scale in southern California, Bulletin of the Seismological Society of America, 77, 2074–2094.
- IASPEI (2005), Summary of Magnitude Working group recommendations on standard procedures for determining earthquake magnitudes from digital data, http://www.iaspei.org/commissions/CSOI.html#wgmm,http://www.iaspei.org/commissions/CSOI/summary_of_WG_recommendations_2005.pdf.
- IASPEI (2013), Summary of magnitude working group recommendations on standard procedures for determining earthquake magnitudes from digital data, http://www.iaspei.org/commissions/CSOI/Summary_of_WG_recommendations_20130327.pdf.
- IDC (1999), IDC processing of seismic, hydroacoustic and infrasonic data, IDC Documentation.
- Jeffreys, H., and K. E. Bullen (1940), Seismological Tables, British Association for the Advancement of Science.
- Kanamori, H. (1977), The energy release in great earthquakes, J. Geophys. Res., 82, 2981–2987.
- Kennett, B. L. N. (2006), Non-linear methods for event location in a global context, Physics of the Earth and Planetary Interiors, 158, 45–64.
- Kennett, B. L. N., E. R. Engdahl, and R. Buland (1995), Constraints on seismic velocities in the Earth from traveltimes, *Geophysical Journal International*, 122, 108–124.

- Kennett, B. L. N., E. R. Engdahl, and R. Buland (1996), Ellipticity corrections for seismic phases, Geophysical Journal International, 127, 40–48.
- Lee, W. H. K., R. Bennet, and K. Meagher (1972), A method of estimating magnitude of local earth-quakes from signal duration, U.S. Geol. Surv., Open-File Rep.
- Lentas, K., D. D. Giacomo, J. Harris, and D. A. Storchak (2019), The ISC Bulletin as a comprehensive source of earthquake source mechanisms, *Earth System Science Data*, 11(2), 565–578, https://doi.org/10.5194/essd-11-565-2019.
- Leptokaropoulos, K. M., A. K. Adamaki, R. G. Roberts, C. G. Gkarlaouni, and P. M. Paradisopoulou (2018), Impact of magnitude uncertainties on seismic catalogue properties, *Geophysical Journal International*, 213(2), 940–951, https://doi.org/10.1093/gji/ggy023.
- Murphy, J. R., and B. W. Barker (2006), Improved focal-depth determination through automated identication of the seismic depth phases pP and sP, Bulletin of the Seismological Society of America, 96, 1213–1229.
- NMSOP-2 (2012), New Manual of Seismological Observatory Practice (NMSOP-2), IASPEI, GFZ, German Research Centre for Geosciences, Potsdam, https://doi.org/10.2312/GFZ.NMSOP-2.
- Nuttli, O. W. (1973), Seismic wave attenuation and magnitude relations for eastern North America, J. Geophys. Res., 78, 876–885.
- Richter, C. F. (1935), An instrumental earthquake magnitude scale, Bulletin of the Seismological Society of America, 25, 1–32.
- Ringdal, F. (1976), Maximum-likelihood estimation of seismic magnitude, Bulletin of the Seismological Society of America, 66(3), 789–802.
- Sambridge, M. (1999), Geophysical inversion with a neighbourhood algorithm, Geophysical Journal International, 138, 479–494.
- Sambridge, M., and B. L. N. Kennett (2001), Seismic event location: non-linear inversion using a neighbourhood algorithm, *Pure and Applied Geophysics*, 158, 241–257.
- Storchak, D. A., J. Schweitzer, and P. Bormann (2003), The IASPEI standard seismic phases list, Seismological Research Letters, 74(6), 761–772.
- Storchak, D. A., J. Schweitzer, and P. Bormann (2011), Seismic phase names: IASPEI Standard, in *Encyclopedia of Solid Earth Geophysics*, edited by H.K. Gupta, pp. 1162–1173, Springer.
- Storchak, D. A., J. Harris, L. Brown, K. Lieser, B. Shumba, R. Verney, D. Di Giacomo, and E. I. M. Korger (2017), Rebuild of the Bulletin of the International Seismological Centre (ISC), part 1: 1964–1979, Geoscience Letters, 4(32), https://doi.org/10.1186/s40562-017-0098-z.
- Storchak, D. A., J. Harris, L. Brown, K. Lieser, B. Shumba, and D. Di Giacomo (2020), Rebuild of the Bulletin of the International Seismological Centre (ISC)-part 2: 1980–2010, Geoscience Letters, 7(18), https://doi.org/10.1186/s40562-020-00164-6.
- Stähler, S., and K. Sigloch (2014), Fully probabilistic seismic source inversion—Part 1: Efficient parameterisation, *Solid Earth*, 5(2), 1055–1069, https://doi.org/10.5194/se-5-1055-2014.
- Stähler, S., and K. Sigloch (2016), Fully probabilistic seismic source inversion—Part 2: Modelling errors and station covariances, *Solid Earth*, 7(6), 1521–1536, https://doi.org/10.5194/se-7-1521-2016.
- Tsuboi, C. (1954), Determination of the Gutenberg-Richter's magnitude of earthquakes occurring in and near Japan, Zisin (J. Seism. Soc. Japan), Ser. II(7), 185–193.
- Tsuboi, S., K. Abe, K. Takano, and Y. Yamanaka (1995), Rapid determination of Mw from broadband P waveforms, Bulletin of the Seismological Society of America, 85(2), 606–613.
- Uhrhammer, R. A., and E. R. Collins (1990), Synthesis of Wood-Anderson Seismograms from Broadband Digital Records, Bulletin of the Seismological Society of America, 80(3), 702–716.
- Vaněk, J., A. Zapotek, V. Karnik, N. V. Kondorskaya, Y. V. Riznichenko, E. F. Savarensky, S. L. Solov'yov, and N. V. Shebalin (1962), Standardization of magnitude scales, *Izvestiya Akad. SSSR.*, Ser. Geofiz.(2), 153–158, Pages 108–111 in the English translation.

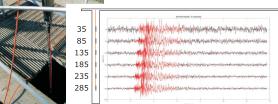
- Villaseñor, A., and E. R. Engdahl (2005), A digital hypocenter catalog for the International Seismological Summary, Seismological Research Letters, 76, 554–559.
- Villaseñor, A., and E. R. Engdahl (2007), Systematic relocation of early instrumental seismicity: Earth-quakes in the International Seismological Summary for 1960–1963, Bulletin of the Seismological Society of America, 97, 1820–1832.
- Woessner, J., and S. Wiemer (2005), Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty, *Bulletin of the Seismological Society of America*, 95(2), https://doi.org/10/1785/012040007.
- Young, J. B., B. W. Presgrave, H. Aichele, D. A. Wiens, and E. A. Flinn (1996), The Flinn-Engdahl regionalisation scheme: the 1995 revision, *Physics of the Earth and Planetary Interiors*, 96, 223–297.

www.sara.pg.it

"sara

Strong motion

Seismic stations


Modal analysis

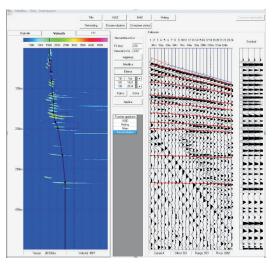
Strong motion network - Turkey

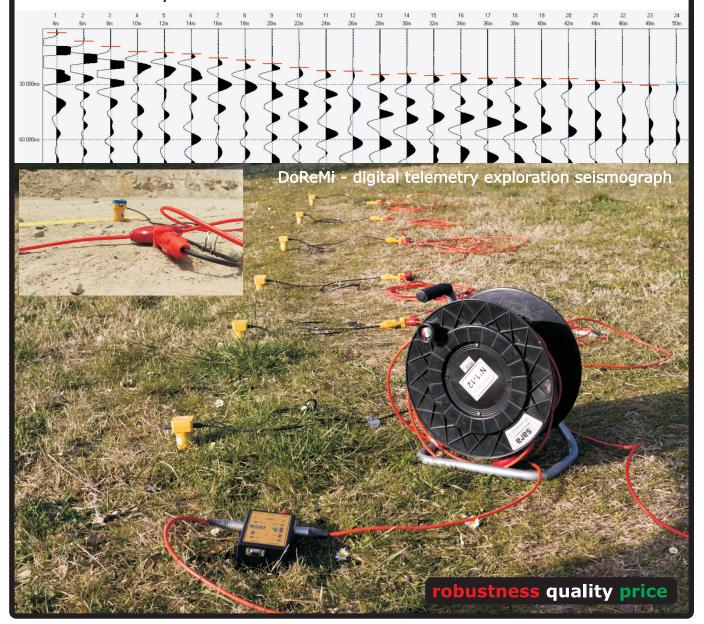
Borehole seismic array

Broad band seismometers:

- observatory grade
- compact
- borehole

SARA electronic instruments s.r.l. your reliable and friendly partner in earthquake monitoring and geophysical exploration



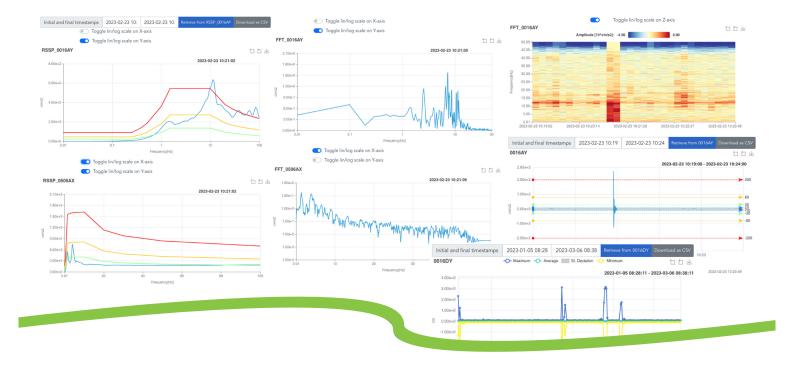

contact us at: info@sara.pg.it or by telephone: +39 075 5051014

Weak motion sensor and microtremor (HVSR) Nodal systems - Terrabot

Geophysical exploration software

VE series broadband seismometer

GMS series recorder / digitiser


The **arolla** broadband seismometer features a compact and lightweight design, yet it is rugged and versatile, making it an ideal choice for many applications. Weak-motion, broadband seismometers have the highest sensitivity among seismometers over long periods, and are able to pick up even small tremors at great distances.

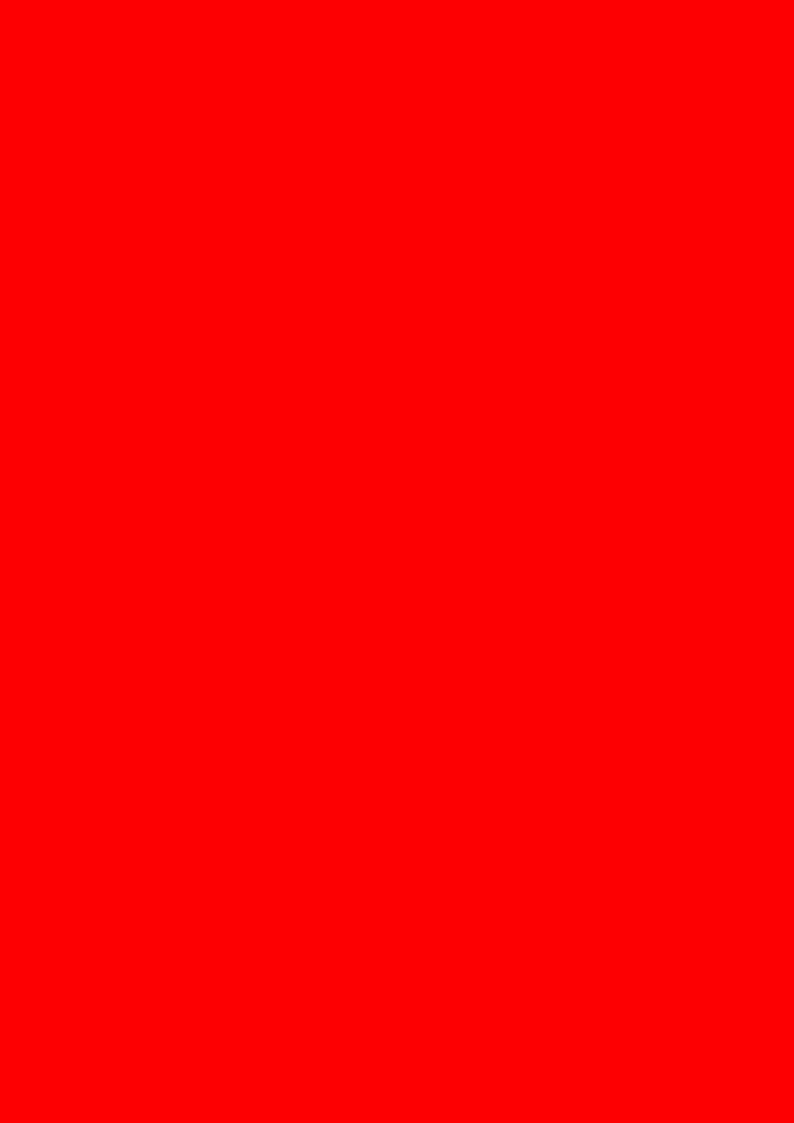
The culmination of years of experience designing reliable, high-precision, low-noise seismic equipment enabled the creation of **arolla**.

Best paired with **arolla** is **nair** slim—GeoSIG's latest generation seismic recorder that offers highest performance, excellent operational flexibility and enhanced connectivity. GeoSIG's **nair** slim is a self-contained instrument that acquires and processes data in real time. It boasts an impressive 146db (0.01-30Hz), making it suitable for weak motion precision recording. A set comprising **arolla** and **nair** slim is fully compatible with existing GeoSIG systems that may already be in place. Also, its simple upgrade path makes **nair** slim "future proof."

A winning combination: arolla and nair slim!

GeoSIG swiss made to measure

GeoSMART Offers Peak Performance


GeoSMART is an innovative graphical application that provides tools for realtime structural health monitoring for civil engineering structures. GeoSMART, with its "smart" features, can monitor and display the status of a structure that is equipped with GeoSIG measuring instruments. GeoSMART is S2HM in a Box; it has been designed to meet fundamental engineering requirements with respect to structural health monitoring applications.

Main Features of GeoSMART

- Support for any type of sensor such as acceleration, velocity, displacement, tilt, wind, temperature, strain, and many more.
- User-friendly web-interface for an intuitive experience.
- ♦ 3D representation of any structure with live status
- Interactive zoom, rotate, pan, visibility and projection.
- Multiple structures on live interactive map.
- Real-time continuous data acquisition and processing.
- Storage and direct download of all data and graphics.
- Data export for long-term storage.
- Sliding window-based continuous frequency analyses: Amplitude, Spectrogram and Response Spectra.
- Rigid body motions in translations and rotations.

- Interpolations for non-instrumented areas.
- Interstory drift ratios and torsion.
- Exceedance of predefined threshold levels or curves.
- Plot of archive data and statistical information.
- Live screen indicators and HTML formatted emails.
- Individualised notifications to users / user groups.
- Customisable messages such as action plans.
- Reports including actual images of plotted graphics.
- ♦ Hardware relays to start or shutdown any process.
- Advanced user accessible powerful database.
- API to fetch and externally manipulate the stored data.

GeoSIG Ltd | Wiesenstrasse 39 8952 Schlieren, Switzerland T: +41 44 810 2150 | F: +41 44 810 2350 www.geosig.com

